Förderhinweis, Danksagung und Vorwort

Das IGF-Vorhaben "Wirtschaftliche Auslegung von ermüdungsbeanspruchten, geschweißten Rundhohlprofilknoten unter Berücksichtigung der erforderlichen Schweißnahtqualität", IGF-Projekt Nr. 18883/BG, der Forschungsvereinigung Stahlanwendung e. V. (FOSTA), Sohnstraße 65, 40237 Düsseldorf wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Die Autoren dieses Forschungsberichts möchten sich herzlich für die erfahrene finanzielle Unterstützung bedanken.

Bundesministerium für Wirtschaft und Energie

Weiterhin gilt Dank dem Projektbegleitenden Ausschuss unter Betreuung von Herrn Dr. G. Nüsse (FOSTA) sowie allen Unternehmen der freien Wirtschaft, die das Forschungsvorhaben unterstützt haben:

- Vallourec Deutschland GmbH, Düsseldorf, die das komplette Rundhohlprofilmaterial (ca. 50 Tonnen) für alle Versuche gestellt hat und
- ZIS Industrietechnik GmbH, Meerane, für den kostenlosen Zuschnitt aller Hohlprofile und die zielführende Diskussion und Hinweise bei der Erarbeitung der Schweißkantenvorbereitungen.

Darüber hinaus bedanken sich die Autoren bei den Mitarbeitern – insbesondere bei Herrn Dr.-Ing. G. Schellenberg, Herrn Dipl.-Ing. R. Haas, Herrn A. Keller und Herrn A. Gaber - von der Abteilung 56 "Betriebsverhalten unter Medieneinfluss" der Materialprüfungsanstalt (MPA) Universität Stuttgart, an der die Schwingversuche mit Strebenbelastung durchgeführt wurden, bei Herrn Dr.-Ing. D. Lotze von der Abteilung "Baukonstruktionen und Bauteilprüfung" der MPA Universität Stuttgart für die Stellung der Messtechnik und bei Herrn O. Schneider (ehemals vom Institut für Konstruktion und Entwurf der Universität Stuttgart) für die Organisation und Applikation der Messeinrichtungen.

Die Autoren bedanken sich ebenfalls bei Herrn Prof. Dr.-Ing. O. Bucak, Herrn Dipl.-Ing. S. Rodic, Herrn U. Eckart und Herrn S. Neumeir für die Unterstützung bei der Durchführung der Großversuche an der Hochschule München.

Zudem gilt der Dank der Autoren Herrn A. Strauß von der Schweißtechnischen Lehr- und Versuchsanstalt Halle (SLV) für die Unterstützung bei der Ultraschallprüfung und für hilfreiche Diskussionen.

Die Ermüdungsversuche an Großbauteilen mit Gurtbiegung sowie die numerischen Untersuchungen hierzu (Kap. 3) wurden von J. Roth durchgeführt. Die Versuche mit Strebennormalkraft (Kap. 5) und die numerischen Untersuchungen und Voruntersuchungen hierzu (Kap. 4) wurden von S. *Bove* durchgeführt. Die Versuchsdatenbank in Kap. 6 wurde von *S. Bove* zusammengetragen und ausgewertet. Die Ergebnisse in Kap. 7 basieren auf den Untersuchungen von *M. Kiel* und *A. Strauß* (SLV). Die Empfehlungen in den Abschnitten 8.2 bis 8.4 wurden von *S. Bove* zusammengetragen und basieren auch zum Großteil auf den Arbeiten [70] und [72]. Teile der Abschnitte 2.1 bis 2.4 sind außerdem aus der Dissertation von *S. Bove* [12] entnommen worden. Der Abschnitt zur zerstörungsfreien Prüfung mit Methoden der Ultraschalltechnik in Kap. 2 sowie Kap. 7 wurden von *R. Steinhausen* in Zusammenarbeit mit *C. Pientschke* und *M. Kiel* verfasst.

Inhaltsverzeichnis

Content

At	bildu	Ingsvei	rzeichnis – List of Figures	VII
Та	belle	nverzei	chnis – List of Tables	XVII
Fo	ormela	zeicher	n – Symbols	XXI
1	Einl	eitung	- Introduction	1
	1.1	Forsch	nungsgegenstand – Object of Research	1
	1.2	Proble	emstellung – Definition of Problem	4
	1.3	Zielse	tzung – Objective	5
	1.4	Lösun	gsweg – Approach	7
2	Star	nd der F	Forschung – State of the Art	11
	2.1	Ermüc	dungsbemessung – Fatigue Design	11
		2.1.1	Einleitung – Introduction	11
		2.1.2	Strukturspannungskonzept – Hot-Spot Stress Approach	13
		2.1.3	Kerbspannungskonzept – Effective Notch Stress Approach	19
	2.2	Schwe	eißnahtqualität – Weld Quality	20
		2.2.1	Einführung – Introduction	20
		2.2.2	Bewertung und Qualitätseinstufung von Schweißnähten – Evaluation and	
			Quality Classification of Welds	20
		2.2.3	Einfluss der Schweißnahtqualität auf das Ermüdungsverhalten – Influence	
			of Weld Quality on the Fatigue Behavior	21
		2.2.4	Beziehung zwischen Qualitätsstufe und Ermüdung – Relationship between	
			Quality Class and Fatigue	23
		2.2.5	Qualitätssicherung – Quality Control	26
	2.3	Ermüc	dung von Schweißnahtwurzelpunkten – Fatigue Behavior of Weld Roots	27
		2.3.1		27
		2.3.2	Ermüdungsverhalten der Schweißnahtwurzeln in Hohlprofilkonstruktionen	
			- Fatigue Behavior of Weld Roots in Tubular Structures	28
		2.3.3	Ermudungsbemessung von Nahtwurzelpunkten – Fatigue Assessment of	
			Weld Roots	29
	~ .	2.3.4	Emptehlungen in Regelwerken – Recommendations in Regulations	31
	2.4	Schwe	elisnantprofilierung – Weld Profiling	31
	2.5	Zersto	rungstreie Prutung mit Methoden der Ultraschalltechnik – Non-Destructive	00
		Iesting		33
		2.5.1	vorbemerkung – Preilminary Note	33

		2.5.2	Grundlagen des Ultraschalls – Basics of Ultrasound	33
		2.5.3	Strahlenakustik – Radiation Acoustics	35
		2.5.4	Sprungabstand – Node Reflection	36
		2.5.5	Reflexionen an Ungänzen – Reflection at Discontinuities	37
		2.5.6	Ungänzenbewertung aus A-Bildern – Evaluation from A-Scans	38
		2.5.7	Phased-Array-Technik – Phased Array Technique	40
		2.5.8	Ultraschallbilder und Ihre Auswertung – Ultrasound Images and their Eva-	
				41
		2.5.9	Schweißnahtunregelmäßigkeiten – Weld Irregularities	44
		2.5.10	Ablauf einer Prüfung – Procedure of Testing	45
	2.6	Zusam	menfassung – Summary	47
2	Gro	Rhautai	Iversuche an dickwandigen K-Knoten unter Gurthiegung	۸۵
5	3 1	Versuc	hsaufbau – Test Setun	49 49
	3.2	Prüfkö	rperplanung und -fertigung – Design and Eabrication of the Test Specimens	52
	0.2	321	Prüfkörnernlanung – Design of the Test Specimen	52
		3.2.1	Prüfkörperfortigung – Test Specimen Expression	57
	<u> </u>	J.Z.Z	Pruikorpenertigung – rest Specimen Pablication	54
	ა.ა	Aumai	Aufnahma dar Sahwaißnahtarafila mittala Silikanahdrückan – Record of	57
		3.3.1	Weld Cosmetry by Silicone Coste	57
		0 0 0	Weld Geometry by Silicone Casis	57
		3.3.2	Aumanme der Schweibnantprome mittels Linear-Laser – Record of Weid	5 0
	0.4	N/	Profile by Linear Laser	58
	3.4	versuc	chsourchtunrung – Test Realization	60
		3.4.1		60
	o =	3.4.2		61
	3.5	Angep	asster Versuchsaufbau – Adapted Test Setup	63
	3.6	Versuc	chsergebnisse – lest Results	65
		3.6.1	Spannungsmessungen – Strain Gauge Measurments	65
		3.6.2	Aufnahme der Rissinitierung und des Rissfortschritts – Recording of the	
			Crack Initiation and Propagation	66
		3.6.3	Ermittlung der Strukturspannungen – Calculation of Hot-Spot Stresses	67
		3.6.4	Schweißnahtvermessung – Weld Profile Measurement	72
		3.6.5	Schliffbilder – Microsections	73
		3.6.6	Auswertung der Versuchsergebnisse – Evaluation of Test Results	75
4	Num	nerische	e Voruntersuchungen – Numerical Preliminary Investigations	79
	4.1	Einleitu	ung – Introduction	79
	4.2	Global	es Modell – Global Model	81
		4.2.1	Abmessungen und statisches System – Dimensions and Structural System	81
		4.2.2	Schweißnahtdetails – Weld Details	82
		4.2.3	Diskretisierung – Discretization	84
		4.2.4	Verschneidungskurve und Übergangsbereich – Intersection Curve and Tran-	
			sition Region	85
		4.2.5	Belastung – Loading	87
		4.2.6	Validierung – Validation	87
		4.2.7	Umlaufende SCF-Werte – Circumferential SCF-Values	89
	4.3	Submo	odell – Submodel	92

		4.3.1	Aufbau und Geometrie – Structure and Geometry	92
		4.3.2	Diskretisierung – Discretization	93
		4.3.3	Belastung – Loading	95
		4.3.4	Auswertung – Evaluation	95
	4.4	Zusam	menfassung – Summary	98
5	Vers	suche a	n K-Knoten mit Schweißnahtunregelmäßigkeiten und Nahtvariationen	
	– Te	sts on I	K-joints with Weld Irregularities and Weld Variations	99
	5.1	Einfüh	rung – Introduction	99
	5.2	Prüfkö	rperplanung und -fertigung – Planning and Fabrication of the Test Specimen	s101
		5.2.1	Prüfkörperplanung – Planning of the Test Specimen	101
		5.2.2	Prüfkörperfertigung – Fabrication of Test Specimens	103
	5.3	Versuc	shskonzept – Test Concept	117
	5.4	Versuc	shsdurchführung – Test Realization	118
		5.4.1	Versuchseinrichtung – Test Setup	118
		5.4.2	Prüfkörper – Test Specimens	119
		5.4.3	Prüfbedingungen – Test Conditions	121
		5.4.4	Statische Vorversuche – Static Preliminary Tests	125
		5.4.5	Ermüdungsversuche – Fatigue Tests	125
	5.5	Beglei	tuntersuchungen – Accompanying Tests	125
		5.5.1	Dehnungsmessungen – Strain Measurements	125
		5.5.2	Rissprüfung – Crack Inspection	127
	5.6	Versuc	chsergebnisse – Test Results	127
		5.6.1	Statische Vorversuche – Static Pretests	127
		5.6.2	Bestimmung von SNCF-Werten – Determination of SNCF Values	129
		5.6.3	Ermüdungsversuche – Fatigue Tests	133
	5.7	Numer	rische Begleituntersuchungen – Numerical Accompanying Investigations .	144
		5.7.1	FE-Modell – FE Model	144
		5.7.2	Validierung – Validation	144
		5.7.3	Strukturspannungsberechnung – Calculation of Hot-Spot Stresses	151
	5.8	Versuc	chsauswertung – Evaluation of Test Results	152
		5.8.1	Vorbemerkung – Preliminary Note	152
		5.8.2	Auswertung auf Nennspannungsniveau – Evaluation on Nominal Stress	
				153
		5.8.3	Auswertung auf Strukturspannungsniveau – Evaluation on Hot Spot Stress	
				154
	5.9	Zusam	menfassung – Summary	156
6	Date	ensamn	nlung zu Ermüdungsversuchen – Data Collection of Fatigue Tests	159
•	6.1	Einfüh	rung – Introduction	159
	6.2	Überbl		160
	6.3	Versuc	chsdaten – Test Data	163
		6.3.1	Versuche des UKOSRP (Teil I) – Tests of UKOSRP (Part I)	163
		6.3.2	Versuche des UKOSRP (Teil II) – Tests of UKOSRP (Part II)	165
		6.3.3	Versuchsdaten an K-Knoten von Maeda. Uchino & Sakurai –	
			Test Data on K-joints by <i>Maeda, Uchino & Sakurai</i>	167

7

	6.3.4	Versuchsdaten an K-Knoten von Uchino, Sakurai & Sugiyama –	
		Test Data on K-joints by Uchino, Sakurai & Sugiyama	170
	6.3.5	Versuchsdaten an K-Knoten der EPFL – Test data on K-joints at the EPFL	173
	6.3.6	Versuchsdaten an K-Knoten in FOSTA P815 – Test data on K-joints in	
		FOSTA P815	176
	6.3.7	Ermüdungsversuche an K-Knoten von Zirn – Fatigue tests on K-joints of Zir	n183
	6.3.8	Versuchsdaten an K-Knoten von Kurobane & Konomi – Test data on K-	
		joints by Kurobane & Konomi	191
	6.3.9	Versuchsdaten an K-Knoten von <i>lida, Sakurai & Hayashi –</i>	
		Test Data on K-joints by <i>lida, Sakurai & Hayashi</i>	194
	6.3.10	Versuchsdaten an KK-Knoten von <i>Koning et al.</i> –	
		Test Data on KK-joints by <i>Koning et al.</i>	198
	6.3.11	Versuchsdaten an N-Knoten von <i>Ohtake et al. 1978 –</i>	
		Test Data on N-joints by Ohtake et al. 1978	201
	6.3.12	Versuchsdaten an N-Knoten von Ohtake et al. 1981 –	
		Test Data on N-joints by Ohtake et al. 1981	204
	6.3.13	Versuchsdaten an K-Knoten von Mitsui et al. 1979 –	
		Test Data on K-joints by <i>Mitsui et al. 1979</i>	208
	6.3.14	Versuchsdaten an K-Knoten von Mitsui et al. 1984 –	
		Test Data on K-joints by <i>Mitsui et al. 1984</i>	210
	6.3.15	Versuchsdaten an N-Knoten von Iwasaki et al. –	
		Test Data on N-joints by <i>Iwasaki et al.</i>	213
6.4	Statisti	sche Auswertung – Statistical Evaluation	216
	6.4.1	Auswertungsverfahren – Evaluation Procedure	216
	6.4.2	Auswertung auf Nennspannungsniveau - Evaluation on Nominal Stess Leve	əl217
	6.4.3	Auswertung auf Strukturspannungsniveau – Evaluation on Hot-Spot Stess	
		Level	233
6.5	Zusam	menfassung – Summary	239
Zers	törung	sfreie Prüfung von K-Knoten mit Methoden der Ultraschalltechnik	241
7.1	Beson	derheiten der K-Knoten im Hinblick auf die Prüfung – Particularities of K-	
	joints i	n Regard to Testing	241
7.2	Unters	uchungsmethoden – Investigation Methods	243
	7.2.1	Verwendete Ultraschallprüftechnik – Applied Ultrasonic Testing Technique	243
	7.2.2	Lokalisierung – Localization	244
	7.2.3	Genauigkeit der Angabe – Accuracy of Indication	245
	7.2.4	Zuordnung Ultraschallanzeigen und Schliffbilder – Assignment of Ultra-	
		sound Scans and Microsections	245
7.3	Unters	uchungen – Investigations	249
	7.3.1	Allgemeine Beschreibung der Prüfsituation – General Description of the	
		Test Situation	249
	7.3.2	Prüfung an der Kronenspitze – Tests at the Crown Toe	250
	7.3.3	Prüfung des Fersenbereiches – Testing of the Crown Heel Area	261
	7.3.4	Prüfung des Zwischenbereiches – Testing of the Transition Area	278
	7.3.5	Prüfung der Großstrukturen – Testing of the Large Scale Specimens	280
7.4	Strateg	jien zur Prüfung – Strategies for Testing	289

		7.4.1 Auffindbare Unregelmäßigkeiten – Detectable Irregularities	289
		7.4.2 Genauigkeit und Grenzen – Accuracy and Limits	290
		7.4.3 Fehlerdefinition anhand der US-Prüfung – Defect Definition Based on UI-	
		trasonic Testing	292
	7.5	Empfehlung für die US-Prüfung – Recommendations for the Ultrasonic Testing	293
		7.5.1 Vorbereitung – Preparation	293
		7.5.2 Vorgehen bei der Prüfung – Procedure During Testing	294
	7.6	Ausblick – Outlook	297
		7.6.1 Anforderungsprofil – Requirements	297
		7.6.2 Umsetzungsmöglichkeiten für das Anforderungsprofil – Implementation Op-	
		tions for the Requirements	297
		7.6.3 Fazit des Ausblicks – Conclusion of the Outlook	299
8	Emp	fehlungen für geschweißte K-Knoten/Vorschlag für eine DASt-Richtlinie – Re-	
	com	mendations for Welded K-joints/Proposal for a DASt-Guideline	301
	8.1	Einleitung – Introduction	301
		8.1.1 Vorbemerkung – Preliminary Note	301
		8.1.2 Anwendungsbereich – Scope of Application	302
	8.2	Empfehlungen für die Planung – Recommendations for Planning	302
	8.3	Empfehlungen für die Bemessung – Recommendations for Design	308
	8.4	Empfehlungen für die Ausführung – Recommendations for Execution	312
	8.5	Empfehlungen für die Qualitätssicherung – Recommendations for Quality Control	322
		8.5.1 Grenzwerte für Schweißnahtunregelmäßigkeiten – Limits for Weld Irregu-	
		larities	322
		8.5.2 Empfehlungen zur Quantifizierung der ausgeführten Nahtgeometrien – Re-	
		commendations for the Quantification of the Executed Weld Geometries .	322
	8.6	Zusammenfassung – Summary	322
9	Zusa	ammenfassung und Ausblick – Conclusions, Summary and Outlook	323
	9.1	Zusammenfassung – Summary	323
	9.2	Ausblick – Outlook	325
10	71162	ammenstellung aller Arbeiten, die im Zusammenhang mit dem Vorhaben ver-	
10	öffer	ntlicht wurden oder in Kürze veröffentlicht werden sollen – List of Publicati-	
	ons	Related to the Project	327
	0110		027
11	Erge	ebnistransfer in die Wirtschaft – Transfer to Practice	329
12	Eins	chätzung zur Realisierbarkeit – Estimation of the Feasibility of the Suggested	
	Tran	sfer Concept	333
13	Wise	senschaftlich-technischer und wirtschaftlicher Nutzen – Scientific-Technologica	al
	and	Economical Benefits	
Α	Anha	ang - Appendix	338
	A.1	Werkzeugnisse - Factory certification	338
	A.2	Werkpläne und WPS- Working drawings and WPS	348
	A.3	Rissfortschritt - Crack propagation	354

В	Anh riati	ang Versuche an K-Knoten mit Schweißnahtunregelmäßigkeiten und Nahtva- onen – Appendix Tests on K-joints with weld irregularities and variations	359
	B.1	Gemessene Dehnungen in den statischen Vorversuchen – Measured Strains in	
		the Static Preliminary Tests	359
	B.2	Gemessene Dehnungen zur Strukturdehnungsbestimmung – Measured Strains	
		for the Determination of Hot-Spot Strains	364
	B.3	Werkzeugnisse – Factory Certification	373
	B.4	Werkpläne – Working Drawings	383
Lit	eratu	rverzeichnis – References	391

Abbildungsverzeichnis

List of Figures

1.1	Beispiele für Stahlverbundbrücken mit Fachwerkträgern aus Rundhohlprofilen	2
	Examples of steel composite bridges with trusses made of circular hollow sections	2
1.2	Nahtwurzeln, aus [70]	3
	Weld roots, taken from [70]	3
1.3	Deutsche Stahlverbundbrücken mit Fachwerken aus Rundhohlprofilen	5
	German steel composite bridges with trusses made of circular hollow sections	5
1.4	Gurtschlankheiten von untersuchten Prüfkörpern in unterschiedlichen Forschungsprojekten	6
	Chord slendernesses of investigated test specimens made of CHS in different research projects	6
1.5	Zuordnungsübersicht der einzelnen Arbeitsschritte	8
	Assignment overview of the individual working steps	8
2.1	Hohlprofilknoten mit Spannungsverteilung	12
	Hollow section joint with stress distribution	12
2.2	Extrapolationsabstände zur Strukturspannungsbestimmung	14
	Extrapolation distances for determination of structural stresses	14
2.3	Ermüdungsversuche aus [70]	18
	Test data of [70]	18
2.4	Längskehlnaht mit Beanspruchung aus Normalspannung	21
	Longitudinal normal-loaded fillet weld	21
2.5	Schweißnahtdetail aus [102]	22
	Weld detail from [102]	22
2.6	Betrachtete Schweißnahtunregelmäßigkeiten	24
	Considered weld imperfections	24
2.7	Wurzelversagen	27
	Weld root failure	27
2.8	Einfluss des Schweißnahtfußes, Bild entnommen aus [70]	32
	Influence of weld imprint, figure taken from [70]	32
2.9	Reflexions- und Brechungsgesetz	35
	Law of reflection and law of refraction	35
2.10	Ultraschallprüfung: Sprungabstand und Einschallwinkel	36
	Ultrasonic testing: skip distance	36
2.11	Schallreflexionen an Inhomogenitäten	37
	Reflection of sound at inhomogeneities	37
2.12	Schematisches AVG-Diagramm	39
	Schematical DGS-diagram	39
2.13	Vergleichslinienverfahren	40
	DAC-method	40
2.14	Phased-Array-Technik	41
	Ultrasonic phased array testing	41

2.15	Phased-Array-Prüfung: Sektorscan und A-Bild	42
	Phased-Array testing: sectorial scan and a-scan	42
2.16	Screenshot eines Phased-Array-Ultraschallprüfgerätes	43
	Screenshot of a phased array test instrument.	43
2.17	Typische Schweißnahtunregelmäßigkeiten	44
	Typical imperfections of welding seams.	44
2.18	Reflexion am Kreisbogen	45
	Reflection at a circular arc.	45
21	Cowählter Brobakärperahmessungebereich	50
3.1		50
20		50
3.2		51
33	Voreuchschizze und Momentenverlauf	52
5.5	Sktoch of the test setue and distrubution of moment	52
3 1	Abmossung dos Knotons und dos Konfolattonanschlussos	52
3.4	Dimensional of the K igint and the and plate joint	53
25		55
3.5	Wold converse of the wolded braces	55
26	Pilder der Eertigung der Greßvoreuchelkärner	55
3.0	Bilder der Ferligung der Großversuchskorper	50
27		50
3.7	Delivery of the large goals member toot appointing	57
2 0		57
3.0		50
2.0		50
3.9	Skizze der vorgenommenen Ausrichlung des Linear-Lasers	59
2 10		59
3.10		59
0 1 1		09
3.11	Management of wold geometry by linear lager	60
2 1 2		61
3.12		61
0 10	Strain gauge measurement positions	60
5.15	Aumanine der Venomung milleis Fligh-Speed-Kamera	62
011		62
3.14		62
0.15		02 G4
3.15		04 64
0.16		04 64
3.10		04 64
2 17		04 65
3.17		00 65
0 10		60
J.10	Fronture ourfood with marked creak growth at appointed	00
0 10	Fracture sunace with marked crack growth at specimen 2	00
3.19	E-initial and the kinet of the large coole members	60
0.00	E Medellierung des K Kretens	б0 СО
3.20		60
		09

3.21	Vergleich der Spannungen bei steigender Elementzahl über die Gurtwanddicke	70
		70
3.22	Vergleich der Strukturspannungen aus FE-Modell und DMS-Messungen	71
	Comparison of hot-spot stresses of FE-model and strain measurements	/1
3.23		/3
	Results of the weld geometry measurement	73
3.24		74
		74
3.25	Versuchsergebnisse auf Nennspannungsniveau ohne Berücksichtigung des Größeneinflusses	75
	lest results under nominal stresses	75
3.26	Auswertung der Versuchsergebnisse der Großbauteilversuche auf Nennspannungsniveau	76
3.27	Evaluation of the test results of the large scale members refered to nominal stresses Ergebnisse der statistischen Auswertung der Großversuche mit modifizierten Strukturspan-	76
	nungen und Berücksichtigung des Größeneinflusses (Durchriss)	77
	Results of statistical evalutaion with modified hot-spot-stresses	77
4.1	Schweißnahtdetails in den numerischen Voruntersuchungen	80
	Weld details in the preliminary numerical investigations	80
4.2	Statisches System des globalen FE-Modells in den numerischen Voruntersuchungen	81
	Structural system of the global FE model within the preliminary numerical investigations	81
4.3	Gewichtungsfunktion	82
	Weighting function	82
4.4	Vernetzung des globalen FE-Modells	85
	Discretization of the global FE model	85
4.5	Übergangsbereich im FE-Modell	86
	Transition region in the FE model	86
4.6	Untersuchter Lastfall Strebennormalkraft im globalen FE-Modell	87
	Investigated load case brace normal force in the global FE model	87
4.7	Statisches System des globalen FE-Modells in den numerischen Voruntersuchungen	88
	Structural system of the global FE model within the preliminary numerical investigations	88
4.8	Vergleich der gemessenen Dehnungen mit der FE-Berechnung für Strebennormalkraft	89
	Comparison of the measured strains with the FE calculation for brace normal force	89
4.9	Verlauf der SCF-Werte in Abhängigkeit des Wurzelspalts <i>s</i>	90
	Distribution of the SCF values depending on the weld root opening <i>s</i>	90
4.10	Verlauf der SCF-Werte in Abhängigkeit der Nichtdurchschweißung n	90
	Distribution of the SCF values depending on the incomplete fusion <i>n</i>	90
4.11	Zwei untersuchte Variationen der Schweißnahtunregelmäßigkeit an der Kronenspitze	91
	Two investigated variations of the weld irregularity at the crown toe	91
4.12	Verlauf der SCF-Werte für variierte Schweißnahtunregelmäßigkeit <i>n</i>	92
	Distribution of the SCF values for varied weld irregularity <i>n</i>	92
4.13	Position der Submodelle im globalen Modell	93
	Position of the submodels within the global model	93
4.14	Abmessungen der Submodelle	94
	Dimensions of the submodels	94
4.15	Vernetzung der Submodelle	95
	Discretization of the submodels	95
4.16	Formzahlen α_k an den Punkten P1 bis P4 der Kronenferse	96
	Fatigue notch factors α_k at points P1 to P4 of the crown heel	96

4.17	Formzahlen α_k and en Punkten P5 bis P7 der Kronenspitze	96 96
5.1	Spaltmaß g_L an den getesteten K-Knoten	102
	Gap size g_L at the tested K-joints	102
5.2	Abmessungen der Prüfkörper für die Knotenversuche der Testserien 100 bis 201	103
	Dimensions of the test specimens for the single joint tests of the test series 100 to 201	103
5.3	Bilder zur Schweißkantenvorbereitung	106
	Figures of the weld preparation	106
5.4	Prüfkörperfertigung: Hohlprofile – Stutzen	110
	Test specimen fabrication: hollow sections – adapters	110
5.5	Prüfkörperfertigung: K-Knoten	111
	Test specimen fabrication: K-joint	111
5.6	Schweißspur an der Kronenspitze auf dem Gurt <i>w_{Gurt}</i>	112
	Weld imprint at crown toe on the chord <i>w_{Gurt}</i>	112
5.7	Schweißspur an der Kronenspitze auf der Strebe w _{Strebe}	112
	Weld imprint at crown toe on the brace <i>w</i> _{Strebe}	112
5.8	Schweißspur an der Kronenferse auf dem Gurt <i>w_{Gurt}</i>	113
	Weld imprint at crown heel on the chord <i>w_{Gurt}</i>	113
5.9	Schweißspur an der Kronenferse auf der Strebe <i>w</i> _{Strebe}	113
	Weld imprint at crown heel on the brace <i>w</i> _{Strebe}	113
5.10	Schweißnahtgröße an der Kronenspitze	114
	Weld size at crown toe	114
5.11	Schweißnahtgröße an der Kronenferse	114
	Weld size at crown heel	114
5.12	Einbrandtiefen bzw. Reststege <i>n</i> an der Kronenspitze	115
	Depths of penetration and root faces <i>n</i> at the crown toe respectively	115
5.13	Einbrandtiefen bzw. Reststege <i>n</i> an der Kronenferse	115
	Depths of penetration and root faces <i>n</i> at the crown heel respectively	115
5.14	Wurzelspalte <i>s</i> an der Kronenspitze	116
	Weld root opening <i>s</i> at the crown toe	116
5.15	Wurzelspalte s an der Kronenferse	116
	Weld root opening s at the crown heel	116
5.16	Blick auf die Schweißnahtwurzeln der Prüfkörper (a) Nr. 15 und (b) Nr. 11	117
	View of the weld roots of the specimens (a) no. 15 and (b) no. 11	117
5.17	Versuchsstand für Strebennormalkraft	119
	Test rig for brace axial force	119
5.18	Ubersicht und Definition der Schweißnahtspuren und -unregelmäßigkeiten	120
	Overview and definition of the weld imprints and irregularities	120
5.19	Beispielhafte Übersicht und Definition der Nahtübergangswinkel α_1 und Kerbradien r	120
	Examplary Overview and definition of the weld transition angles α_1 and notch radii r	120
5.20	Kennzeichnung der Prütkörper am Beispiel von Prütkörper Nr. 9	121
	Marking of test specimens on the example of test specimen no. 9	121
5.21	Ubersichtsplan zu den Stellen der Dehnungsmessungen	126
		126
5.22	Gemessener Druckabtall im Gurt des Prutkorpers Nr. 2	127
F 00	Measured pressure drop in the chord of specimen no. 2	12/
5.23		131
	Strain measurement of the respective test specimens	131

5.24	Umlaufender Strebenwinkel	135
	Circumferential brace angle	135
5.25	Rissinitiierung und -fortschritt Teil 1	136
	Crack initiation and propagation part 1	136
5.26	Rissinitiierung und -fortschritt Teil 2	137
	Crack initiation and propagation part 2	137
5.27	Versagensmodus von Testserie 100	139
	Mode of failure of test series 100	139
5.28	Versagensmodus von Testserie 101	140
	Mode of failure of test series 101	140
5.29	Versagensmodus von Testserie 102	141
	Mode of failure of test series 102	141
5.30	Versagensmodus von Testserie 103	142
	Mode of failure of test series 103	142
5.31	Versagensmodus der Testserien 200 und 201	143
	Mode of failure of test series 200 and 201	143
5.32	Vergleich der gemessenen Dehnungen von Prüfkörper Nr. 10 mit FE-Berechnung	147
	Comparison of the measured strains of specimen no. 10 with FE calculation	147
5.33	Vergleich der gemessenen Dehnungen von Prüfkörper Nr. 21 mit FE-Berechnung	148
	Comparison of the measured strains of specimen no. 21 with FE calculation	148
5.34	Vergleich der gemessenen Dehnungen von Prüfkörper Nr. 24 mit FE-Berechnung	149
	Comparison of the measured strains of specimen no. 24 with FE calculation	149
5.35	Vergleich der gemessenen Dehnungen von Prüfkörper Nr. 27 mit FE-Berechnung	150
	Comparison of the measured strains of specimen no. 27 with FE calculation	150
5.36	Ergebnisse der Ermüdungsversuche mit Strebennormalkraft auf Nennspannungsniveau	155
	Results of fatigue tests with brace normal force at nominal stress level	155
5.37	Ergebnisse der Ermüdungsversuche auf Nennspannungsniveau, inkl. [70]	155
	Results of fatigue tests at nominal stress level, incl. [70]	155
5.38	Ergebnisse der Ermüdungsversuche mit Strebennormalkraft auf Strukturspannungsniveau	157
	Results of fatigue tests with brace normal force at hot spot stress level	157
5.39	Ergebnisse der Ermüdungsversuche auf Strukturspannungsniveau, inkl. [70]	157
	Results of fatigue tests at hot spot stress level, incl. [70]	157
6.1	Berücksichtigte Knotenkonfigurationen	160
	Considered joint configurations	160
6.2	Versuchsstand für N-Knoten mit Strebennormalkraft, aus [128]	163
	Axial test rig for N-joints, taken from [128]	163
6.3	Versuchsstand und Extrapolationsabstände, aus [98]	165
	Test rig and locations for extrapolation, taken from [98]	165
6.4	Versuchsstand und generelle Abmessungen der Prüfkörper und des Versuchsstands, aus [79]	167
	Test rig and general dimensions of the test specimens and the test rig, taken from [79]	167
6.5	Versuchsstand, Prüfkörper und Schweißnahtprofil, aus [118]	170
	Test rig, test specimens and weld profile, taken from [118]	170
6.6	Darstellung der untersuchten Prüfkörper und Ansicht des Versuchsstands, aus [110]	173
	Representation of the examined specimens and view of the truss girder, taken from [110]	173
6.7	Ansicht des Versuchsstands mit eingebautem Prüfkörper aus [11] und [2]	174
	View of the test rig with installed test specimen from [11] und [2]	174
6.8	Versuchsstände für Strebenbelastung, entnommen aus FOSTA P815 [70]	176
	Test setups for brace loading, taken from FOSTA P815 [70]	176

6.9	Versuchsstände für Gurtnormalkraft und Gurtbiegung aus FOSTA P815 [70]
	Test setups for chord axial force and in-plane bending from FOSTA P815 [70]
6.10	Resonanzprüfsystem für Gurtbiegung aus FOSTA P815 [70]
	Resonance test system for chord in-plane bending from FOSTA P815 [70]
6.11	Versuchsstand und Versuchsaufbau für Versuche an K-Knoten, aus ZIRN [132]
	Test rig and test setup for K-joint tests, taken from ZIRN [132]
6.12	Makroschliffe der Schweißnähte, entnommen aus ZIRN [132]
	Macrosections of welds, taken from ZIRN [132]
6.13	Versuchsaufbau und Prüfkörper nach Versuchsende, entnommen aus [74] 191
	Test setup and test specimen after end of test, taken from [74]
6.14	Genereller Versuchsaufbau aus IIDA ET AL. [64]
	General test setup from IIDA ET AL. [64]
6.15	Bruchfläche aus [70] und qualitativer Rissfortschritt nach RADAJ [104]
	Fracture surface from [70] and qualitative crack propagation acc. to RADAJ [104] 195
6.16	Versuchsträger 5 bzw. 6 aus KONING ET AL. [20]
	Truss girder 5 and 6 respectively from KONING ET AL. [20]
6.17	Versuchsstand mit eingebautem Fachwerk, entnommen aus KONING ET AL. [20] 199
	Test setup with installed truss girder, taken from KONING ET AL. [20]
6.18	Extrapolationsabstände aus KONING ET AL. [20] 199
	Extrapolation limits from KONING ET AL. [20]
6.19	N-Knoten ohne und mit Verstärkung und Versuchsstand, aus OHTAKE ET AL. [96] 201
	N-joint without and with reinforcement and test setup, taken from OHTAKE ET AL. [96] 201
6.20	Versuchsstand und Rissverlauf am Beispiel des Prüfkörpers I-3-1(2) aus [93,95]
	Test setup and crack propagation of specimen I-3-1(2) from [93,95]
6.21	N-Knoten mit Positionen der Dehnungsmessstreifen, aus OHTAKE ET AL. [95]
	N-joint with positions of strain gauges, taken from OHTAKE ET AL. [95]
6.22	Schematische Darstellung der untersuchten Prüfkörper aus MITSUI ET AL. [87]
	Schematic representation of the investigated test specimens from MITSULET AL. [87] 208
6.23	Schematische Darstellung der untersuchten, unausgesteiften Prüfkörper aus MITSUI ET AL. [88]210
	Schematic representation of the investigated unstiffened test specimens from MITSUI ET AL. [88]210
6.24	Dehnungs- und Spannungsverlauf an unterschiedlichen Prüfkörpern aus MITSUI ET AL. [88] . 211
	Strain and stress distribution for several test sepcimens from MITSULET AL. [88]
6.25	Schematische Darstellung der untersuchten N-Knoten aus IWASAKI ET AL. [65]
	Schematic representation of the investigated N-joints from IWASAKI ET AL. [65]
6.26	Erster Vorschlag für die Ermüdungsfestigkeit von Hohlprofilknoten [81]
	First proposal for the fatigue strength of hollow section joints [81]
6.27	Vorschlag 2.a für die Ermüdungsfestigkeit von Hohlprofilknoten [50]
	Proposal 2.a for the fatigue strength of hollow section joints [50]
6.28	Vorschlag 2.b für die Ermüdungsfestigkeit von Hohlprofilknoten, aus [80]
	Proposal 2.b for the fatigue strength of hollow section joints, from [80]
6.29	Ergänzende Tabelle zum Vorschlag 2.b für die ansetzbare Ermüdungsfestigkeit [80] 222
	Complementary table to the proposal 2.b for the applicable fatigue strength [80]
6.30	Vorschlag 3 der ENV 1993-1-1 für die Ermüdungsfestigkeit von Hohlprofilknoten, aus [44] 223
	Proposal 3 of ENV 1993-1-1 for the fatigue strength of hollow section joints, from [44] 223
6.31	Vorschlag der Kerbfalltabellen für Hohlprofilknoten als Grundlage für den EC3 [15]
	Proposal for the detail categories for hollow section ioints as the basis for the EC3 [15] 225
6.32	Aktuelle Kerbfalltabelle für K- und N-Knoten aus Rundhohlprofilen mit Spalt [37]
	Current detail category for K- and N-Joints made of circular hollow sections [37]
6.33	Alle zusammengetragenen Versuchsdaten aus der Literatur auf Nennspannungsniveau 228

	All collected test data from literature at nominal stress level	228
6.34	Versuchsdaten aus der Literatur für $\tau < 0.5$ und $t < 10$ mm	229
	Experimental data from literature for $\tau < 0.5$ and $t < 10$ mm	229
6.35	Versuchsdaten aus der Literatur für $\tau < 0.5$ und $t > 10$ mm	229
	Experimental data from literature for $\tau < 0.5$ and $t > 10$ mm	229
6.36	Versuchsdaten aus der Literatur für $0.5 < \tau < 0.7$ und $t < 10$ mm	230
	Experimental data from literature for $0.5 < \tau < 0.7$ and $t < 10$ mm	230
6 37	Versuchsdaten aus der Literatur für $0.5 < \tau < 0.7$ und $t > 10$ mm	231
0.07	Experimental data from literature for $0.5 < \tau < 0.7$ and $t > 10$ mm	231
6 38	Versuchsdaten aus der Literatur für $0.7 < \tau < 0.9$	232
0.00	Experimental data from literature for $0.7 < \tau < 0.9$	232
6.39	Neuer Vorschlag für die Ermüdungsfestigkeit auf Nennspannungsniveau	232
0.00	Proposal for the fatigue strength on nominal stress level	232
6 40	Versuchsdaten aus der Literatur auf Strukturspannungsniveau (ohne Korrekturen)	233
0.10	Experimental data from literature on hot spot stress level (without modifications)	233
6 4 1	Zusammengetragene Versuchsdaten aus der Literatur mit Korrekturen	235
0.11	Collected experimental data from literature with modifications	235
6 42	Versuchsdaten aus der Literatur mit neuer Korrekturmethode auf Strukturspannungsniveau	238
0	Experimental data from literature modified with new correction method on hot spot stress level	238
6 43	Versuchsdaten aus der Literatur mit üblicher Wanddicken-Korrektur aus [121]	238
0.10	Experimental data from literature with usual thickness-correction from [121]	238
6 4 4	Veraleich der Korrekturmethoden bei $N = 5.000.000$ Schwingspielen	239
0	Comparison of the correction methods at $N = 5000000$ cycles	239
6.45	Neuer Vorschlag für die modifizierte Ermüdungsfestigkeit auf Strukturspannungsniveau	240
0.10	New proposal for the modified fatigue strength on hot spot stress level	240
7.1	Exemplarische Screenshots der verwendeten Ultraschall-Prüfgeräte	243
	Screenshots of the used UT devices	243
7.2	Winkelskala zum Anbringen an der Strebe	244
	Goniometer for use at brace	244
7.3	Winkelskala im Einsatz	245
	Goniometer in use.	245
7.4	Konstruktion zur Zuordnung der Unregelmäßigkeiten	246
	Construction for mapping of the discontinuities.	246
7.5	Schliff von Großstruktur 3a sowie Zuordnung der im Ultraschallbild gefundenen Unregelmä-	
	ßigkeit.	247
	Section of large scale structure PK 3a and mapping of the discontinuities found with phased	
	array testing.	247
7.6	Prüfsituation	249
	Sketch of the testing situation.	249
7.7	Prinzip der Prüfung an der Kronenspitze	251
	Testing procedure of the crown toe	251
7.8	Schema der Kronenspitze	253
	Sketch of the crown toe	253
7.9	Schema Kronenspitze mit Prüfkopf an der Schweißnaht	254
	Sketch of the crown toe at the welding seam	254
7.10	Schema Kronenspitze mit Prüfkopf an Schweißnaht mit Umlenkung.	255
	Sketch of the crown toe (not to scale) with skip	255
7.11	Prüfung der Kronenspitze an PK401.2A	257

	Testing of the crown toe at PK401.2A	257
7.12	Prinzip der Prufung von Wurzelunganzen an der Kronenspitze	258
7 4 0	lesting principle for weld root imperfections at crownt toe	258
7.13		259
		259
7.14		260
745		260
7.15		261
7 4 0		261
7.16		262
	Geometrie of the weiging seam at the crown neel (continuation)	262
1.17		265
	Detection of a gap at the crown heel of P401.2a with prob direct at the welding seam	265
7.18	Prutung Ruckwand an Ferse von P401.2A, 6 mm	267
	lesting of the back wall at the crown heel of P401.2A, the probe distance to the welding seam	
		267
7.19	Prutung Ruckwand an Ferse von P401.2A, Prutkoptposition 12 mm von Schweißnaht	269
	lesting of the back wall at the heel of P401.2A, probe distance to welding seam 12 mm	269
7.20	Prutung Ruckwand an Ferse von P401.2A, Prutkoptposition 21 mm von Schweißnaht	270
	lesting of the back wall at the heel of P401.2A, probe distance to welding seam 21 mm	270
7.21	Prüfung Rückwand an Ferse von P401.2A, 30 mm	271
	lesting of the back wall at the heel of P401.2A, probe distance to welding seam 30 mm	2/1
7.22	Detektion Spalt an Ferse P401.2C, direkt an Schweißnaht	272
	Detection of a gap at the heel of P401.2C, directly at welding seam.	272
7.23	Detektion Spalt an Ferse P401.2C, Prutkoptposition 38 mm von Schweißnaht	273
	Detection of a gap at the heel of P401.2C, probe distance to welding seam is 38 mm	273
7.24	Prüfung Rückwand an Ferse von P401.2C, 18 mm	273
	Detection of a gap at the heel of P401.2C, probe distance to welding seam is 18 mm.	273
7.25	Detektion Spalt an Ferse P400.2A, direkt an Schweißnaht, $\delta = 64^{\circ}$	2/4
7 00	Detection of a gap at the heel of P400.2A, directly at welding seam, beam angel $\delta = 64^{\circ}$	274
7.26	Detektion Spalt an Ferse P400.2A, direkt an Schweißnaht, 68°	274
7 07	Detection of a gap at the neel of P400.2A, directly at weiding seam, beam angel $\delta = 68^{\circ}$	274
1.27	Prutung Ruckwand an Ferse von 400.2A, 23 mm	275
7 00	lesting of the back wall at crown heel of 400.2A, probe distance to welding seam 23 mm	275
7.28	Prutung Ruckwand an Ferse von PK10-A	276
7 00		276
7.29		277
7 00	Gap detection in the crown neel region	277
7.30	Beispiel für die Prufung im Zwischenbereich (3:00 Unr)	279
7.04	Example for the testing in the intermediate region (3-0 clock-position)	2/9
7.31	Analyse der Ultraschallanzeigen von Großstruktur PK 2 B, 5°	281
7 00	Large-scale structure PK 2 B, at 5°	281
7.32	Analyse der Ultraschallanzeigen von Großstruktur PK 3 B. –5°	283
7 00		283
1.33	Analyse der Oltraschallanzeigen von Größstruktur PK 2 A. 1/0°	∠ŏ4
704	Large-scale structure PK 2A at 1/0°	204
7.34	Analyse der Oltraschallanzeigen von Größstruktur PK 2 A. 100°	280
7 05		2007
7.35	Analyse der Ultraschallanzeigen von Großstruktur PK 2 B. 95°	287

7.36 7.37	Large-scale structure PK 2 B at 95°	287 288 288 291 291
8.1	Richtzeichnung für die Planung von ebenen Fachwerkträgern	304 304
8.2	Richtzeichnung für die Planung von räumlichen Fachwerkträgern	305
8.3	Richtzeichnung für die Planung von Spaltmaßen an Fachwerkträgern	306
8.4	Neuer Vorschlag für die Ermüdungsfestigkeit auf Nennspannungsniveau	309
8.5	Neuer Vorschlag für die modifizierte Ermüdungsfestigkeit auf Strukturspannungsniveau	309 312
8.6	New proposal for the modified fatigue strength on hot spot stress level	312 314
8.7	Angle of bevelling at weld preparation	314 315
8.8	Specification drawing for the weld preparation of the recommended chord brace connection . Beispiel einer Muster-Schweißanweisung	315 318
8.9	Example of a welding procedure specification	318 319
8.10	Example of a welding procedure specification, continuation of Abb. 8.8	319 320
8.11	Example of a welding procedure specification, continuation of Abb. 8.9	320 321
	Example of a welding procedure specification, continuation of Abb. 8.10	321
A.1	Risswachstum PK 1	355 355
A.2	Risswachstum PK 2	356 356
A.3	Risswachstum PK 3 Crack propagation of specimen 3	357 357

Tabellenverzeichnis

List of Tables

2.1	Extrapolationsabstände für Rundhohlprofilknoten
2.2	Überblick über die durchgeführten Ermüdungsversuche in [70]
	Overview of performed fatigue tests in [70]
3.1	Schweißnahtvorbereitung aller Probekörper
	Weld preperation for all test specimens 54
3.2	Überblick über die Versuchsergebnisse
	Overview of the test results
3.3	Extrapolationspunkte für Knoten aus CHS und RHS
	Boundaries of extrapolation region for CHS and RHS joints
3.4	Ergebnisse Netzkonvergenzstudie
	Results of mesh convergence study
3.5	Ermittelte SCF-Werte für Großversuchskörper 72
	Calculated SCF-values for large scale specimens
3.6	Ermittelte Strukturspannungen
	Calculated Hot-spot stresses
3.7	Ergebnisse der Schweißnahtvermessung
	Results of the weld geometry measurement
3.8	Umrechnung der Versuchsergebnisse auf Bezugswanddicke
	Conversion of the test results to the reference wall thickness
3.9	Zusammenfassung der Versuchsauswertungen der Großversuche inkl. FOSTA P815 bei $R = -178$
	Summary of the test results evaluation of the large scale members including the results of
	FOSTA P815 at $R = -1$
4.1	FE-Modellierung der Schweißnahtdetails
	FE modelling of weld details
4.2	FE-Modellierung des kompletten Schweißnahtverlaufs
	FE modelling of whole weld
4.3	Elementanzahl im globalen Modell
	Number of elements in the global model
4.4	Grenzen für den Extrapolationsbereich für KHP-Anschlüsse nach CIDECT
	Boundaries for the extrapolation region for CHS-joints acc. to CIDECT
5.1	Übersicht der Testserien
	Overview of the test series
5.2	Profiltoleranzen der Hohlprofile in den Versuchen mit Strebennormalkraft
	Tolerances of the hollow sections in the tests with brace axial force
5.3	Mechanische Kennwerte gemäß 3.1-Abnahmeprüfzeugnissen
	Mechanical properties acc. to 3.1 inspection certificates

5.4	Chemische Kennwerte gemäß 3.1-Abnahmeprüfzeugnissen	105
	Chemical properties acc. to 3.1 inspection certificates	105
5.5	Vorgeschlagene Schweißkantenvorbereitung	108
	Proposed weld preparation	108
5.6	Gemessene Geometrie der Prüfkörper der Testserien 100 bis 201	122
	Measured geometry of the test specimens of test series 100 to 201	122
5.7	Gemessene Schweißnahtdicken und Schweißnahtunregelmäßigkeiten	123
	Measured weld thicknesses and weld irregularities	123
5.8	Gemessene Kerbradien und Schweißnahtübergangswinkel	124
	Measured notch radii and weld transition angles	124
5.9	Gemessene Abstände für die Bestimmung der SNCF-Werte	130
	Measured distances for determination of SNCF-values	130
5.10	Dehnungskonzentrationsfaktoren (SNCF)	132
	Strain concentration factors (SNCF)	132
5.11	Ermüdungsversuche an Prüfkörper Nr. 1 bis 27	134
	Fatigue tests of test specimen no. 1 to 27	134
5.12	Geometrie, Schweißnahtdetails und Belastung der FE-Modelle	145
	Geometry, weld details and loading of the FE models	145
5.13	Berechnete und zur Auswertung herangezogene SCF-Werte	152
	Calculated SCF-values used for evaluation	152
6.1	Versuchsdaten des UKOSRP – Teil I	164
	Test data of UKOSRP – Part I	164
6.2	Versuchsdaten des UKOSRP – Teil II	166
	Test data of UKOSRP – Part II	166
6.3	Biegemomentanteile in den Versuchen von MAEDA ET AL. [79]	168
	Ratio of bending moments within the tests from MAEDA ET AL. [79]	168
6.4	Versuchsdaten aus MAEDA ET AL. [79]	169
	Test data from MAEDA ET AL. [79]	169
6.5	Versuchsdaten aus UCHINO ET AL. [118]	172
	Test data from UCHINO ET AL. [118]	172
6.6	Versuchsdaten an K-Knoten der EPFL, aus [110], [11] und [2]	175
	Test data on K-joints of the EPFL, from [110], [11] and [2]	175
6.7	Biegemomentanteile in den Versuchen von KUHLMANN ET AL. [70]	178
	Ratio of bending moments in the tests from KUHLMANN ET AL. [70]	178
6.8	Versuchsdaten an K-Knoten im Rahmen des Forschungsvorhabens FOSTA P815, aus [70]	179
	Test data on K-joints of the FOSTA research project P815, taken from [70]	179
6.9	Fortsetzung von Tab. 6.8	180
	Continuation of Tab. 6.8	180
6.10	Fortsetzung von Tab. 6.8	181
	Continuation of Tab. 6.8	181
6.11	Fortsetzung von Tab. 6.8	182
	Continuation of Tab. 6.8	182
6.12	Biegemomentanteile in den Versuchen von ZIRN [132]	185
	Ratio of bending moments in the tests from ZIRN [132]	185
6.13	Versuchsdaten an K-Knoten von ZIRN, entnommen aus [132]	186
	Test data on K-joints of ZIRN, taken from [132]	186
6.14	Fortsetzung von Tab. 6.13	187
	Continuation of Tab. 6.13	187

0.10	Fortsetzung von Tab. 6.13	188
6 16		100
0.10	Continuation of Tab. 6.13	189
6 17	Fortsetzung von Tab. 6.13	190
0.17	Continuation of Tab 6 13	190
6 18	Biegemomentanteile in den Versuchen von KUBOBANE & KONOMI [74]	192
0.10	Batio of bending moments in the tests from KUROBANE & KONOMI [74]	192
6.19	Versuchsdaten an K-Knoten von KUROBANE ET AL., entnommen aus [74]	193
	Test data on K-joints of KUROBANE ET AL., taken from [74]	193
6.20	Versuchsdaten an K-Knoten von IIDA ET AL., entnommen aus [64]	197
	Test data on K-joints of IIDA ET AL., taken from [64]	197
6.21	Versuchsdaten an KK-Knoten von KONING ET AL., entnommen aus [107]	200
	Test data on KK-joints of KONING ET AL., taken from [107]	200
6.22	Versuchsdaten an N-Knoten von OHTAKE ET AL. [96]	203
	Test data on N-joints of OHTAKE ET AL. [96]	203
6.23	Versuchsdaten an N-Knoten von OHTAKE ET AL. [95]	207
	Test data on N-joints of OHTAKE ET AL. [95]	207
6.24	Versuchsdaten an K-Knoten von MITSUI ET AL. [87]	209
	Test data on K-joints of MITSUI ET AL. [87]	209
6.25	Versuchsdaten an K-Knoten von MITSUI ET AL. [88]	212
	Test data on K-joints of MITSUI ET AL. [88]	212
6.26	Versuchsdaten an N-Knoten von IWASAKI ET AL. [65]	215
	Test data on N-joints of IWASAKI ET AL. [65]	215
7.1	Vermessung des Gurtrückwandechos	256
7.1	Vermessung des Gurtrückwandechos	256 256
7.1 7.2	Vermessung des Gurtrückwandechos	256 256 258
7.1 7.2	Vermessung des Gurtrückwandechos	256 256 258 258
7.1 7.2 7.3	Vermessung des Gurtrückwandechos	256 256 258 258 264
7.1 7.2 7.3	Vermessung des Gurtrückwandechos	256 258 258 264 264
 7.1 7.2 7.3 7.4 	Vermessung des Gurtrückwandechos	256 258 258 264 264 268
7.17.27.37.4	Vermessung des Gurtrückwandechos	256 258 258 264 264 268 268
 7.1 7.2 7.3 7.4 7.5 	Vermessung des Gurtrückwandechos	256 258 258 264 264 268 268 268 280
 7.1 7.2 7.3 7.4 7.5 	Vermessung des Gurtrückwandechos	256 258 258 264 264 264 268 268 280 280
 7.1 7.2 7.3 7.4 7.5 8.1 	Vermessung des Gurtrückwandechos	256 258 258 264 264 268 268 280 280 280
 7.1 7.2 7.3 7.4 7.5 8.1 	Vermessung des Gurtrückwandechos	256 258 258 264 264 268 268 280 280 280 308 308
 7.1 7.2 7.3 7.4 7.5 8.1 	Vermessung des Gurtrückwandechos	256 258 258 264 264 268 280 280 280 308 308
 7.1 7.2 7.3 7.4 7.5 8.1 A.1 	Vermessung des Gurtrückwandechos	256 258 258 264 268 268 280 280 308 308 308 354
 7.1 7.2 7.3 7.4 7.5 8.1 A.1 	Vermessung des Gurtrückwandechos	256 258 258 264 264 268 280 280 280 308 308 308 354 354
 7.1 7.2 7.3 7.4 7.5 8.1 A.1 P.1 	Vermessung des GurtrückwandechosMeasurement of the echos of the chord back wallVermessung der GurtrückwandMeasurement of the chord backwallVermessung des RückwandechosVermessung des RückwandechosMeasurement of the back wall echos at test specimens with brace angle $\theta = 60^{\circ}$ Measurement of the back wall echos at test specimens with brace angle $\theta = 60^{\circ}$ Measurement of the gap size at test specimens with brace-inlination $\theta = 60^{\circ}$ Measurement of the gap size at test specimens with brace-inlination $\theta = 60^{\circ}$ Durch Vergleich mit Schliffbildern analysierte Prüfanzeigen für die Großstrukturen.Analysed ultrasound testing results for the large-scale structured.Empfohlene geometrische ParameterbereicheRecommended geometric parameter rangesAufgenommener RissfortschrittRecorded crack propagation	256 258 258 264 264 268 268 280 280 280 308 308 308 354 354
 7.1 7.2 7.3 7.4 7.5 8.1 A.1 B.1 	Vermessung des GurtrückwandechosMeasurement of the echos of the chord back wallVermessung der GurtrückwandMeasurement of the chord backwallVermessung des RückwandechosMeasurement of the back wall echos at test specimens with brace angle $\theta = 60^{\circ}$ Measurement of the back wall echos at test specimens with brace angle $\theta = 60^{\circ}$ Measurement of the gap size at test specimens with brace-inlination $\theta = 60^{\circ}$ Measurement of the gap size at test specimens with brace-inlination $\theta = 60^{\circ}$ Durch Vergleich mit Schliffbildern analysierte Prüfanzeigen für die Großstrukturen.Analysed ultrasound testing results for the large-scale structured.Empfohlene geometrische ParameterbereicheRecommended geometric parameter rangesAufgenommener RissfortschrittRecorded crack propagationGemessene StrebendehnungenMaasured brace straine	256 258 258 264 264 268 280 280 280 308 308 308 354 354 354
 7.1 7.2 7.3 7.4 7.5 8.1 A.1 B.1 B.2 	Vermessung des GurtrückwandechosMeasurement of the echos of the chord back wallVermessung der GurtrückwandMeasurement of the chord backwallVermessung des RückwandechosMeasurement of the back wall echos at test specimens with brace angle $\theta = 60^{\circ}$ Measurement of the back wall echos at test specimens with brace angle $\theta = 60^{\circ}$ Measurement of the gap size at test specimens with brace-inlination $\theta = 60^{\circ}$ Measurement of the gap size at test specimens with brace-inlination $\theta = 60^{\circ}$ Durch Vergleich mit Schliffbildern analysierte Prüfanzeigen für die Großstrukturen.Analysed ultrasound testing results for the large-scale structured.Empfohlene geometrische ParameterbereicheRecommended geometric parameter rangesAufgenommener RissfortschrittRecorded crack propagationGemessene StrebendehnungenMeasured brace strainsGamessene StrebendehnungenMeasuren brace strainsGemessene StrebendehnungenMeasuren brace strainsGemessene StrebendehnungenMeasuren brace strainsGemessene Strebendehnungen	256 258 258 264 264 268 280 280 280 308 308 308 354 354 360 360
 7.1 7.2 7.3 7.4 7.5 8.1 A.1 B.1 B.2 	Vermessung des GurtrückwandechosMeasurement of the echos of the chord back wallVermessung der GurtrückwandMeasurement of the chord backwallVermessung des RückwandechosMeasurement of the back wall echos at test specimens with brace angle $\theta = 60^{\circ}$ Measurement of the back wall echos at test specimens with brace angle $\theta = 60^{\circ}$ Measurement of the gap size at test specimens with brace-inlination $\theta = 60^{\circ}$ Measurement of the gap size at test specimens with brace-inlination $\theta = 60^{\circ}$ Durch Vergleich mit Schliffbildern analysierte Prüfanzeigen für die Großstrukturen.Analysed ultrasound testing results for the large-scale structured.Empfohlene geometrische ParameterbereicheRecommended geometric parameter rangesAufgenommener RissfortschrittRecorded crack propagationGemessene StrebendehnungenMeasured brace strainsGemessene Strebendehnungen, Fortsetzung von Tab. B.1Measured brace strainsContinuation of Tab. B.1	256 258 258 264 264 268 280 280 308 308 308 354 354 360 360 361 361
 7.1 7.2 7.3 7.4 7.5 8.1 A.1 B.1 B.2 B.3 	Vermessung des GurtrückwandechosMeasurement of the echos of the chord back wallVermessung der GurtrückwandMeasurement of the chord backwallVermessung des RückwandechosMeasurement of the back wall echos at test specimens with brace angle θ =60°Measurement of the back wall echos at test specimens with brace angle θ =60°Measurement of the gap size at test specimens with brace-inlination θ =60°Measurement of the gap size at test specimens with brace-inlination θ =60°Durch Vergleich mit Schliftbildern analysierte Prüfanzeigen für die Großstrukturen.Analysed ultrasound testing results for the large-scale structured.Empfohlene geometrische ParameterbereicheRecommended geometric parameter rangesAufgenommener RissfortschrittRecorded crack propagationGemessene StrebendehnungenMeasured brace strainsGemessene Strebendehnungen, Fortsetzung von Tab. B.1Measured brace strains, continuation of Tab. B.1Gemessene Gurtrlehnungen	256 258 258 264 264 268 280 280 280 308 308 308 354 354 360 361 361
 7.1 7.2 7.3 7.4 7.5 8.1 A.1 B.1 B.2 B.3 	Vermessung des Gurtrückwandechos Measurement of the echos of the chord back wall Vermessung der Gurtrückwand Measurement of the chord backwall Vermessung des Rückwandechos Measurement of the back wall echos at test specimens with brace angle θ =60° Measurement of the back wall echos at test specimens with brace angle θ =60° Measurement of the back wall echos at test specimens with brace angle θ =60° Measurement of the gap size at test specimens with brace-inlination θ =60° Durch Vergleich mit Schliffbildern analysierte Prüfanzeigen für die Großstrukturen. Analysed ultrasound testing results for the large-scale structured. Analysed ultrasound testing results for the large-scale structured. Empfohlene geometrische Parameterbereiche Recorded crack propagation Aufgenommener Rissfortschritt Recorded crack propagation Measured brace strains Gemessene Strebendehnungen Measured brace strains, continuation of Tab. B.1 Measured brace strains, continuation of Tab. B.1 Measured chord strains	256 258 258 264 264 268 280 280 280 308 308 308 354 354 360 361 361 362 362
 7.1 7.2 7.3 7.4 7.5 8.1 A.1 B.1 B.2 B.3 B.4 	Vermessung des GurtrückwandechosMeasurement of the echos of the chord back wallVermessung der GurtrückwandMeasurement of the chord backwallVermessung des RückwandechosMeasurement of the back wall echos at test specimens with brace angle $\theta = 60^{\circ}$ Measurement of the back wall echos at test specimens with brace angle $\theta = 60^{\circ}$ Measurement of the gap size at test specimens with brace-inlination $\theta = 60^{\circ}$ Measurement of the gap size at test specimens with brace-inlination $\theta = 60^{\circ}$ Durch Vergleich mit Schliffbildern analysierte Prüfanzeigen für die Großstrukturen.Analysed ultrasound testing results for the large-scale structured.Empfohlene geometrische ParameterbereicheRecommended geometric parameter rangesAufgenommener RissfortschrittRecorded crack propagationGemessene StrebendehnungenMeasured brace strainsGemessene Gurtdehnungen, Fortsetzung von Tab. B.1Measured chord strainsGemessene GurtdehnungenMeasured chord strainsGemessene Gurtdehnungen	256 258 258 264 268 268 280 280 280 308 308 354 354 354 360 361 361 361 362 362 362
 7.1 7.2 7.3 7.4 7.5 8.1 A.1 B.1 B.2 B.3 B.4 	Vermessung des GurtrückwandechosMeasurement of the echos of the chord back wallVermessung der GurtrückwandMeasurement of the chord backwallVermessung des RückwandechosMeasurement of the back wall echos at test specimens with brace angle $\theta = 60^{\circ}$ Measurement of the back wall echos at test specimens with brace angle $\theta = 60^{\circ}$ Measurement of the gap size at test specimens with brace-inlination $\theta = 60^{\circ}$ Durch Vergleich mit Schliftbildern analysierte Prüfanzeigen für die Großstrukturen.Analysed ultrasound testing results for the large-scale structured.Empfohlene geometrische ParameterbereicheRecorded crack propagationGemessene StrebendehnungenMeasured brace strainsGemessene Strebendehnungen, Fortsetzung von Tab. B.1Measured brace strainsGemessene GurtdehnungenMeasured chord strainsGemessene Gurtdehnungen, Fortsetzung von Tab. B.3Measured chord strainsGemessene Gurtdehnungen, Fortsetzung von Tab. B.3	256 258 258 264 264 268 280 280 280 280 308 308 354 354 354 360 361 361 362 362 363 363

B.5	Ermittlung der Strukturdehnungen ε_{HS} für Prüfkörper Nr. 10	365
	Determination of structural strains ε_{HS} of test specimen no. 10	365
B.6	Ermittlung der Nenndehnungen für Prüfkörper Nr. 10	366
	Determination of nominal strains of test specimen no. 10	366
B.7	Ermittlung der Strukturdehnungen ε_{HS} für Prüfkörper Nr. 21	367
	Determination of structural strains ε_{HS} of test specimen no. 21	367
B.8	Ermittlung der Nenndehnungen für Prüfkörper Nr. 21	368
	Determination of nominal strains of test specimen no. 21	368
B.9	Ermittlung der Strukturdehnungen ε_{HS} für Prüfkörper Nr. 24	369
	Determination of structural strains ε_{HS} of test specimen no. 24	369
B.10	Ermittlung der Nenndehnungen für Prüfkörper Nr. 24	370
	Determination of nominal strains of test specimen no. 24	370
B.11	Ermittlung der Strukturdehnungen ε_{HS} für Prüfkörper Nr. 27	371
	Determination of structural strains ε_{HS} of test specimen no. 27	371
B.12	Ermittlung der Nenndehnungen für Prüfkörper Nr. 27	372
	Determination of nominal strains of test specimen no. 27	372

Formelzeichen

Symbols

Lateinische Formelzeichen – Latin symbols

A ₀ Querschnittsfläche des Gurtprofils
A1 Querschnittsfläche des Strebenprofils
a
B Exponent zur Berücksichtigung des Größeneinflusses
d_0 Durchmesser des Gurtprofils, in anderer Literatur auch D
d_1 Durchmesser der Strebe, in anderer Literatur auch d
e Ausmitte
F ₀ Gurtnormalkraft
<i>F</i> ₁ Strebennormalkraft
g Spaltmaß
h_{f}
logdekadischer Logarithmus
L Abstand vom Schweißnahtübergang für eine Extrapolation
<i>le</i> Elementkantenlänge in einem FE-Netz
M_0 Gurtbiegemoment
M_1 Strebenbiegemoment
<i>m</i> Neigung der Wöhlerlinie
N1Zahl der Spannungsspiele bis 15 % Dehnungsabfall
N2Zahl der Spannungsspiele bis zur Sichtbarkeit des Risses
N3Zahl der Spannungsspiele bis zur 1. Rissdurchdringung der Wanddicke
N4Zahl der Spannungsspiele bis zum Bruch (Tragfähigkeitsverlust)
n Größe des Reststeges an der Kronenspitze, auch t_n in der numerischen
Voruntersuchung
RSpannungsverhältnis
r ₀ Gurtradius
r ₁ Strebenradius
rAusrundungsradius der Schweißnahtkerben
<i>r_{ref}</i> Effektiver Ausrundungsradius der Schweißnahtkerben für das
Kerbspannungskonzept
<i>s</i> Höhe des Wurzelspalts an der Kronenferse, auch <i>h_s</i> in der numerischen
Voruntersuchung
t_0
t_1
t _{ref} Referenzwanddicke
VQuerkraft
WWiderstandsmoment
wSchenkelmaß der Schweißnaht = Schweißnahtspur
x, y, z Koordinaten im kartesischen Koordinatensystem

Griechische Formelzeichen – Greek symbols

lpha
α_1 Schweißnahtübergangswinkel
$\alpha_k \dots \dots$ Formzahl
β Durchmesserverhältnis
γ Gurtschlankheit
$\gamma_{\it Mf}$ Teilsicherheitsbeiwert der Widerstandsseite bei Ermüdung
$\gamma_{\it Ff}$ Teilsicherheitsbeiwert der Einwirkungsseite bei Ermüdung
δ Umlaufwinkel
ε Nahtöffnungswinkel oder Dehnung θ Strebenneigung in der Fachwerkwand σ_{HS} einwirkende Strukturspannung, auch <i>Hot-Spot</i> -Spannung genannt $\Delta \sigma_{C,HS}$ Bezugswert der Ermüdungsfestigkeit auf Strukturspannungsniveau bei $N = 2$ Mio. Schwingspielen σ_{nom} einwirkende Nennspannung $\Delta \sigma_{C,nom}$ Bezugswert der Ermüdungsfestigkeit auf Nennspannungsniveau bei $N = 2$ Mio. Schwingspielen τ Wanddickenverhältnis ϕ Strebenneigung bei Blick in Gurtlängsrichtung

Indizes – Indices

- axNormalkraft (engl. axial force)
- *br* Strebe (engl. *brace*)
- ch Gurt (engl. chord)
- *ipb*Biegung in der Ebene (engl. *in-plane bending*)
- L Längsrichtung
- nom Nenn-, nominell
- opbBiegung aus der Ebene (engl. out-of-plane bending)
- QQuerrichtung

Abkürzungen – Abbreviations

- API American Petroleum Institute
- APDL Ansys Parametric Design Language
- AWS American Welding Society
- BASt Bundesanstalt für Straßenwesen
- CIDECT . . internationale Vereinigung der Hohlprofilhersteller (Comité International pour le Développement et l'Étude de la Construction Tubulaire)
- CHS Rundhohlprofil (engl. *circular hollow section*)
- DASt Deutscher Ausschuss für Stahlbau e.V.
- DNV Det Norske Veritas, norwegische Klassifikationsgesellschaft (Schiffsbau, Energiewirtschaft etc.)
- DMS Dehnungsmessstreifen
- ECCS European Convention for Constructional Steelwork
- ECSC European Coal and Steel Community
- EKS Europäische Konvention für Stahlbau
- EPFL École Polytechnique Fédérale de Lausanne
- FEFinite Elemente
- IIW International Institute of Welding
- IWM Fraunhofer-Institut für Werkstoffmechanik
- MPA Materialprüfungsanstalt (z.B. der Universität Stuttgart)
- PAprojektbegleitender Ausschuss zu diesem Forschungsvorhaben
- SCF Spannungskonzentrationsfaktor (engl. stress concentration factor)
- SLVSchweißtechnische Lehr- und Versuchsanstalt
- SNCF Dehnungskonzentrationsfaktor (engl. strain concentration factor)
- WPS Schweißanweisung (engl. welding procedure specification)
- ZfP Zerstörungsfreie Prüfung

1 Einleitung

Introduction

Kurzfassung

Geschweißte Hohlprofilkonstruktionen unter Ermüdungsbeanspruchung weisen großes wirtschaftliches Potenzial im Bauwesen, Maschinen- und Anlagenbau auf. Besonders häufig treten geschweißte Hohlprofilknoten mit K- oder KK-Form auf, die deshalb Gegenstand dieses Forschungsvorhabens sind. Neben noch offenen Fragen in der Bemessung, ist auch unklar wie mit Schweißnahtunregelmäßigkeiten im Inneren der Hohlprofilkonstruktionen umgegangen werden soll. In diesem Kapitel wird der Forschungsgegenstand, die Problemstellung und die Zielsetzung vorgestellt.

Abstract

Welded tubular structures under fatigue loading have a great economic potential in civil engineering, mechanical and plant engineering. Welded hollow section K- or KK-joints are particularly common, therefore forming the scope of this research project. In addition to still open questions in the design, it is also unclear how to deal with weld irregularities in the interior of tubular structures. This chapter presents the scope, defines the probelm and explains the objective of this research project.

1.1 Forschungsgegenstand – Object of Research

Ermüdungsbeanspruchte, geschweißte Hohlprofilkonstruktionen kommen häufig im Bauwesen (z.B. Abb. 1.1), Maschinen- und Anlagenbau vor und weisen ein großes wirtschaftliches Potenzial auf. Vor allem Rund- oder Kreishohlprofile (KHP), im englischen Sprachraum als *circular hollow sections* (CHS) bezeichnet, sind den offenen Profilen durch ihre günstige Querschnittsform besonders in Anwendungsbereichen weit überlegen, in denen richtungsunabhängige Widerstandsund Steifigkeitsbeiwerte, eine geringe Stabilitätsgefährdung und/oder hohe Torsionswiderstände entscheidend sind. Hohlprofile erscheinen infolge der höheren Preise im Vergleich zu offenen Profilen zunächst einmal als unwirtschaftlich. Berücksichtigt man aber die oben genannten Vorteile, ist ein Ausgleich des finanziellen Mehraufwands möglich. Konstruktionen aus Rundhohlprofilen mit ihrer äußeren, kantenlose Form und ihrer Ähnlichkeit zu natürlich gewachsenen Strukturen werden auch dann bevorzugt, wenn der Fokus auf ästhetisch ansprechende Tragwerke gelegt wird. Voraussetzung hierfür ist natürlich, dass sich gegebenenfalls der Mehraufwand hierfür wirtschaftlich vertreten lässt, siehe auch KUHLMANN ET AL. [70, S. 4].

Eine im Bauwesen besonders häufig auftretende Konstruktionsform sind Fachwerke, bei denen die Streben oder auch Diagonalen gemeinsam mit dem Gurt ein liegendes "K" bilden, Abb. 1.1. Zu nennen sind hier beispielsweise Straßen- oder Eisenbahnbrücken als Stahlverbundbrücken, deren Haupttragwerke aus räumlichen (Abb. 1.1 (a)) oder ebenen Fachwerken (Abb. 1.1 (b)) aus Rundhohlprofilen bestehen. Die Verbindungspunkte der einzelnen Fachwerkstäbe können dann als K-Knoten oder bei räumlichen Fachwerken als KK-Knoten bezeichnet werden.

Abb. 1.1: Beispiele für Stahlverbundbrücken mit (a) räumlichen oder (b) ebenen Fachwerkträgern aus unmittelbar verschweißten Rundhohlprofilen. (a) aus KUHLMANN ET AL. [70] und (b) aus BOVE [12]

Fig. 1.1: Examples of steel composite bridges with (a) spatial or (b) planar trusses made of directly welded circular hollow sections. (a) from KUHLMANN ET AL. [70] and (b) from BOVE [12]

Die Hohlprofile sind dann entweder mittelbar über Gussknoten oder unmittelbar über geschweißte Knoten miteinander verbunden. Gerade Konstruktionsformen mit direkt miteinander verschweißten Hohlprofilen bieten u. a. den Vorteil, dass die hoch belasteten Gurte kontinuierlich ausgeführt werden können und ggf. nur an den Montagestößen (z.B. aufgrund begrenzter Hubgewichte und Transportlängen) gefügt werden müssen. Dadurch reduziert sich die Zahl der Schweißstöße und die damit einhergehende Anzahl an potentiellen Versagensstellen, siehe auch [70]. Außerdem sind bei solch einer Ausführung keine Vorlaufzeiten nötig, die für die Planung und Optimierung von Gussformteilen angesetzt werden müssen. Eine Verkürzung der Planungs- und Ausführungsphase ist die Folge.

Nachteilig ist bei einer geschweißten Knotenausführung die komplexe Verschneidungsgeometrie der Rundhohlprofile. Diese führt dazu, dass sich die Nahtform und die Schweißposition über den Umfang der Gurt-Streben-Verbindung ständig ändert und sich der Schweißprozess als besonders schwierig erweist. Somit werden hohe Anforderungen an die Schweißbefähigung des fertigenden Unternehmens gestellt, sodass die wirtschaftlichen Vorteile möglicherweise nicht mehr zum Tragen kommen, [70]. Die komplexe Geometrie stellt aber nicht die einzige Herausforderung dar. Durch die einseitige, schweißtechnische Fertigung der Hohlprofilknoten entstehen im Inneren der Hohlprofilknoten, insbesondere an den Schweißnahtwurzelpunkten, Schweißnahtunregelmäßigkeiten, wie z.B. Wurzelspalte an den Kronenfersen (siehe Abb. 1.2 (a)) oder auch Reststege bzw. nicht durchgeschweißte Stumpfnähte an den Kronenspitzen (siehe Abb. 1.2 (b)). Diese lassen sich unter Praxisbedingungen aufgrund der oben erwähnten komplexen Anschlussgeometrie auch nicht ganz vermeiden und sind derzeit durch eine zerstörungsfreie Prüfung auch nicht erfassbar.

Außerdem erfahren Fachwerkknoten in den oben genannten Straßenbrücken infolge Verkehr hohe zyklische Beanspruchungen, aber auch im On- und Offshore-Bereich treten durch Wind- bzw. Wellenbeanspruchungen Ermüdungslasten auf. Für unmittelbar verschweißte Rundhohlprofile stellt sich dies ebenfalls als nachteilig heraus. Zum einen findet eine Lastübertragung nur über die sich in den Knotenbereichen befindlichen Schweißnähte statt. Zum anderen ändert sich in den Verschneidungsbereichen die globale Geometrie und Steifigkeit abrupt. Beides führt zu hohen strukturbedingten Spannungskonzentrationen, oder auch zu sogenannten *Hot Spots*, an den Schweißnähten. Die Schweißnähte sind damit Ausgangspunkte eines möglichen Ermüdungsversagens. Aber nicht nur diese geometrischen Kerben führen zu einer undefinierbaren Erhöhung der lokalen Spannungen. Auch der Schweißprozess selbst trägt zur Spannungserhöhung bei. Dies liegt vor allem an der metallurgischen Kerbe, die u.a. aus Gefügeänderungen durch Wärmeeinbringung beim Schweißen oder aus Eigenspannungen resultiert. In [72] bzw. [73, S. 509] konnte schließlich festgestellt werden, dass der Ermüdungsnachweis für Straßenbrücken mit geschweißtem Raumfachwerk, wie z.B. in Abb. 1.1 (a) dargestellt, bemessungsbestimmend sein kann.

Eine weitere Schwierigkeit ergibt sich schließlich bei der Ermüdungsbemessung solcher Tragwerke, wenn aus statisch-konstruktiven Gründen höhere Tragfähigkeiten erzielt werden müssen und aufgrund dessen große Wanddicken gewählt werden, um gleichzeitig die maximalen Hohlprofildurchmesser aus den entwurfsspezifischen Randbedingungen einhalten zu können. Die Problematik besteht hier vor allem darin, dass die bisher bauaufsichtlich eingeführten Bemessungsregeln für den Ermüdungsnachweis, wie zum Beispiel die DIN EN 1993-1-9 [37], nur absolute Wanddicken, d.h. Nennwanddicken von $t \leq 8$ mm abdecken. Weitere Richtlinien und Bemessungsempfehlungen, wie z.B. des DNV [45] (basierend auf den Forschungsarbeiten von EFTHYMIOU ET AL. [51]) oder des IIW [131] bzw. CIDECT [130], beschränken andererseits die relative Dickwandigkeit bzw. die Gurtschlankheit, die durch das Verhältnis von Gurtdurchmesser zu Gurtwanddicke beschrieben wird, auf $\gamma = d_0/(2 \cdot t_0) \ge 8$ bzw. 12. Nicht selten sind aber Schlankheiten von < 8 nötig, wie bei den in Abb. 1.1 dargestellten Verbundbrücken. Werden die erwähnten Grenzen über- bzw. unterschritten spricht man von dickwandigen Gurten. Das Forschungsvorhaben FOSTA P815 [70] hat hier einen wichtigen Schritt gemacht, indem Bemessungsregeln für geschweißte Hohlprofilknoten aus dickwandigen Rundhohlprofilen entwickelt wurden. Diese Bemessungsregeln beruhen auf dem Strukturspannungskonzept [47], mit dem die Spannungskonzentration infolge des Geometriesprungs zutreffend erfasst werden kann [70]. Diese Vorgehensweise ist jedoch in der Praxis nicht geläufig, so dass hier zusätzliche Erläuterungen und Hilfsmittel entsprechend aufbereitet werden müssen. Dies gilt auch für die normungstechnische Umsetzung, die unter Berücksichtigung des Geltungsbereiches und der Anforderungen eine entsprechende Aufbereitung erfordert. Ohne diese ist eine allgemeingültige Anwendung in der Normung schwer durchsetzbar.

Abb. 1.2: Nahtwurzel an (a) der Kronenferse von Versuchskörper 13 und (b) an der Kronenspitze von Versuchskörper 3, aus [70]

Fig. 1.2: Weld root on (a) the crown heel of test specimen 13 and (b) on the crown toe of test specimen 3, taken from [70]

1.2 Problemstellung – Definition of Problem

In KUHLMANN ET AL. [70] konnte schon richtig zusammengefasst werden, dass die Rissbildung bei geschweißten Rundhohlprofilknoten im Regelfall an der Profilaußenseite und damit sichtbar am Schweißnahtübergang auftritt. Bei Inspektionen bietet das den Vorteil, dass Ermüdungsrisse frühzeitig detektiert werden und damit ggf. auch frühzeitige Instandsetzungsmaßnahmen ergriffen werden können. Anders gestaltet es sich, wenn die Schweißnähte mit mangelnder Qualität ausgeführt sind und an den Nahtwurzelpunkten Schweißnahtunregelmäßigkeiten, wie z.B. Wurzelspalte, vorzufinden sind, die durch die nur einseitig mögliche schweißtechnische Fertigung oder zum Beispiel auch durch eine unplanmäßige Unrundheit der Gurtprofile im Inneren der Hohlprofilknoten entstehen können. Wie bereits erwähnt, lassen sich diese aufgrund der komplexen Anschlussgeometrie unter Praxisbedingungen auch nicht gänzlich vermeiden. Eine Erfassung der Fehlergrößen durch zerstörungsfreie Prüfmethoden ist bisher aber kaum möglich. Auch konnte ihr Einfluss auf die Rissbildung und -initiierungspunkte bisher noch nicht quantifiziert werden. Neben den komplizierten geometrischen Verschneidungen zwischen Gurt und Strebe hat man aufgrund der Unkenntnis über den Zustand der Schweißnahtwurzeln in den letzten Jahren immer wieder Probleme darin gesehen, geschweißte Hohlprofilknoten für ermüdungsbeanspruchte Konstruktionen auszuführen, ohne deren Schweißnahtunregelmäßigkeiten geregelt erfassen und ermüdungstechnisch einstufen zu können. Dies zeigt sich vor allem an den bisher in Deutschland vorrangig nur mit Stahlgussknoten ausgeführten Brücken, siehe Abb. 1.3 (a) und (b) sowie weitere Beispiele und Erläuterungen in [61]. Ausnahmen bilden hier die Ausführungen mit konventionellen, durch Knotenbleche versteiften Rohrknoten oder die "erste integrale, voll verschweißte Bogenfachwerkbrücke mit großformatigen [...]" [113] Rundhohlprofilen, die die BAB 73 bei Lichtenfels überguert, siehe Abb. 1.3 (c). Bei der Ausführung von Gussknoten besteht ein erhöhtes Risiko von Verzögerungen im Bauablauf, was zu Zusatzkosten führt, die man auch bei besonderen ästhetischen Ansprüchen nicht immer bereit ist zu investieren. In [90, Tabelle 2] werden zum Beispiel Lieferzeiten im Idealfall von ca. 9 Wochen für einzelne Gussknoten angegeben.

Die experimentellen Untersuchungen in [70] konnten jedoch verdeutlichen, dass nicht jede Unregelmäßigkeit der Schweißnaht zu einem vorzeitigen Versagen führt. Im Gegenteil, trotz vorhandener Wurzelspalte wurden befriedigende Ermüdungsfestigkeiten erreicht. Für den Entwurf und die Ausführung wurden in [70] speziell für K- und KK-Knoten mit geringer Gurtschlankheit (relativ dickwandige Gurte) praxisnahe Empfehlungen formuliert, die auf vollständige Durchschweißung im Bereich der Verschneidung verzichten und so eine besonders wirtschaftliche Schweißnahtausführung erlauben. Diese sieht durchgeschweißte Stumpfnähte an den Kronenspitzen vor, die in einem Übergangsbereich in eine Kehlnaht an den Kronenfersen übergehen, siehe dazu auch Abschnitt 5.2.2. Eine Definition des "zulässigen Wurzelspaltes" war in diesem Zusammenhang aber nicht möglich.

Neben der wichtigen Entwicklung und Absicherung der normungstechnischen Aufbereitung von Bemessungsregeln ist auch die Qualitätssicherung im Rahmen der ZfP Gegenstand dieses Forschungsvorhabens. Bislang können Hohlprofilkonstruktionen nur von außen zuverlässig mit Sichtprüfung und oberflächennaher Rissprüfung (Magnetpulver, Farbeindringverfahren) geprüft werden. Eine Bewertung der inneren Schweißnahtunregelmäßigkeiten ist bislang nur zuverlässig durch eine zerstörende Prüfung an einer Arbeitsprobe möglich. Bei der zerstörenden Prüfung werden u.U. Schweißnahtunregelmäßigkeiten an den Wurzelpunkten festgestellt. Zwar sind diese bis zu einem bestimmten Grad nachweislich in Schwingversuchen unschädlich, aber nach

Fig. 1.3: (a) Viaduct St. Kilian [115]. (b) Composite bridge in the context of the L1141 at Korntal-Münchingen [72]. (c) Composite bridge over the BAB 73 near Suhl/Lichtenfels with fully welded, planar truss girders made of circular hollow sections [113]

(c)

den einschlägigen Regelwerken, z.B. DIN EN ISO 5817 [42], sind diese Unregelmäßigkeiten nicht zugelassen. Um die Unregelmäßigkeiten an den Wurzelpunkten zu vermeiden, ist in der Praxis ein erhöhter Fertigungsaufwand z.B. eine Quasi-Durchschweißung erforderlich, was aus wirtschaftlicher Sicht wenig sinnvoll erscheint, zumal die Ermüdungsfestigkeit der Konstruktion nicht wesentlich verbessert wird.

Unklar ist auch, inwiefern sich die in [70] hergeleiteten Ermüdungsfestigkeiten auf Großstrukturen übertragen lassen. Gerade in den Bereichen der Offshore-Konstruktionen werden nicht selten Durchmesser von über 1000 mm verwendet. Betrachtet man die Gurtschlankheiten bzw. Durchmesser-Wanddicken-Verhältnisse γ der in unterschiedlichen Forschungsvorhaben und Literaturstellen untersuchten Versuchskörper in Abb. 1.4 fällt auf, dass so gut wie keine Ermüdungsversuche an dickwandigen Knoten ($\gamma < 8$) mit Gurtdurchmessern $d_0 > 508$ mm untersucht wurden. Eine systematische Untersuchung und Validierung dieses Größenbereichs ist für eine erweiterte Anwendung erforderlich und aus der Sicht der Praxis auch wünschenswert.

1.3 Zielsetzung – Objective

Die in Abs. 1.2 erläuterten Probleme und offenen Fragestellungen sollen im Rahmen dieses Forschungsprojektes durch die Erfüllung von vier Zielen gelöst und beantwortet werden:

1. Einleitung

Abb. 1.4: Gurtschlankheiten γ von untersuchten Prüfkörpern aus Rundhohlprofilen in unterschiedlichen Forschungsprojekten **Fig. 1.4**: Chord slendernesses γ of investigated test specimens made of CHS in different research projects

Ziel 1: Ableitung statistisch abgesicherter Ermüdungsfestigkeiten

Für eine Verbreitung der Konstruktionsform von Fachwerken mit geschweißten Rundhohlprofilen auch für ermüdungsbeanspruchte Bauwerke ist es wichtig, Bemessungsregeln für den Ermüdungsnachweis normungstechnisch aufzubereiten, so dass sie auch von der Bauaufsicht akzeptiert werden können. Dazu gehört eine klare Definition des Anwendungsbereiches und der Voraussetzungen insbesondere in Hinblick auf die Gurt-Streben-Verschweißung. Das Vorgängervorhaben FOSTA P815 [70] hat gezeigt, dass die untersuchten dickwandigen Strukturen unter Berücksichtigung des Maßstabseffektes durchaus vergleichbare Festigkeiten wie dünnwandige Strukturen erreichen. Daher ist ein weiteres Ziel alle deutschen und internationalen Forschungsarbeiten zusammenfassend zu betrachten und einen einheitlichen Vorschlag für die ansetzbare Ermüdungsfestigkeit nach Eurocode 3 einschließlich Maßstabseffekt zu erarbeiten. Durch Berücksichtigung verschiedener Versuchsserien einschließlich der neuen im Projekt durchgeführten Versuche kann auch die Streuung durch unterschiedliche Fertigungsbetriebe erfasst werden.

Ziel 2: Erweiterung des Anwendungsspektrums auf Großstrukturen

Im Rahmen des Vorgängerprojektes konnten nur Hohlprofildurchmesser \leq 508 mm untersucht werden. Um eine auch für Hohlprofilknoten mit größeren Durchmessern und geringeren Gurtschlankheiten gültige Aussage bezüglich der Ermüdungsfestigkeiten und des Wanddickeneinflusses treffen zu können, ist das dritte Ziel Strukturen mit Durchmessern von 660 mm zu untersuchen und damit die Anwendungsgrenzen des Bemessungsvorschlags zu erweitern.

Ziel 3: Entwicklung von praxisnahen Empfehlungen zur Quantifizierung der ausgeführten Nahtgeometrie insbesondere im Nahtwurzelbereich

Um im Markt und von Bauherren eine Akzeptanz für die Ausführung von geschweißten Hohlprofilknoten für ermüdungsbeanspruchte Konstruktionen zu erhalten, ist es wichtig, eine geregelte Erfassung von Schweißnahtunregelmäßigkeiten und eine ermüdungstechnische Einstufung zu ermöglichen. Typische, in Hohlprofilkonstruktionen auftretende Schweißnahtunregelmäßigkeiten müssen im Vorfeld dazu dahingehend bewertet werden, ob sie zum einen mit einer Reduktion der Ermüdungsfestigkeit verbunden sind und zum anderen ob bzw. bis zu welchem Grad sie toleriert werden können. Ein Ziel dieses Forschungsvorhabens ist es deshalb mit Hilfe von Ermüdungsversuchen an Prüfkörpern mit planmäßig eingebrachten Schweißnahtunregelmäßigkeiten zwischen Gurt und Strebe und anschließender Bestimmung der Ermüdungsfestigkeiten den Einfluss der Nahtqualität systematisch zu untersuchen. Dabei werden zu verschiedenen Spaltgrößen mehrere Ermüdungsversuche durchgeführt, um eine statistisch abgesicherte Aussage treffen zu können und den Einfluss zu quantifizieren. Aus den in den Ermüdungsversuchen gewonnenen Erkenntnissen, sollen in einem nächsten Schritt Empfehlungen für die Berücksichtigung der Nahtqualität entwickelt werden. Dazu zählen auch Empfehlungen zur Bestimmung der Schweißnahtunregelmäßigkeiten durch eine zerstörungsfreie Prüfmethode.

Ziel 4: Erarbeitung eines Vorschlags für eine DASt-Richtlinie, die anwenderorientierte Empfehlungen zur Bemessung, Ausführung und Qualitätssicherung geschweißter Rundhohlprofilknoten gibt

Für die Umsetzung in die Praxis ist es wichtig, die Nachweisformate entsprechend praxisgerecht aufzubereiten und für die Ausführung der Nähte klare Regeln anzugeben, die auch durch eine geeignete Qualitätssicherung überwacht werden können. Das letzte Ziel ist es, als Ergebnis dieses Vorhabens eine DASt-Richtlinie vorzubereiten, die die Einführung in den deutschen Markt fördert und sich später auch in die europäische Normung leicht übertragen lässt. Eine DASt-Richtlinie hat in Deutschland Regelungscharakter. Damit können Forschungsergebnisse in verhältnismäßig kurzer Zeit der Praxis nutzbar gemacht werden. Auch lassen sich Regelungen aus DASt-Richtlinien einfacher "als Stand der Technik" in den europäischen Normungsprozess einführen, als reine Forschungsergebnisse.

Auf lange Sicht, soll durch das Forschungsvorhaben und durch diese vier Ziele die Effizienz planender Ingenieurbüros und ausführender Stahlbauunternehmen gesteigert werden. Bei einer entsprechenden Aufbereitung der Forschungsergebnisse in einer DASt-Richtlinie gewinnen sie darüber hinaus die notwendige Planungs- und Ausführungssicherheit insbesondere im bauaufsichtlichen Bereich. Durch die klare Abgrenzung des Anwendungsbereichs der Bemessungsempfehlungen für Hohlprofilknoten und die Erweiterung auf Großstrukturen erlangen die Ingenieurbüros Planungssicherheit und können so gezielt Vorteile im Wettbewerb mit anderen Werkstoffen nutzen. Schweißnahtunregelmäßigkeiten sind unter Praxisbedingungen aufgrund der komplexen Anschlussstruktur von Hohlprofilverbindungen nicht gänzlich zu vermeiden. Durch eine sichere und differenzierte Bewertung von Schweißnahtungänzen wird es für die ausführenden Unternehmen möglich, bestimmte Schweißnahtunregelmäßigkeiten im Knoten zu belassen, die nach bisheriger Regelung aufwändig zu reparieren sind, was ihnen einen Wettbewerbsvorteil gegenüber dem dominierenden Massivbau verschafft. Diese Erkenntnisse gerade auch zu einer praktikablen Qualitätssicherung sind am Ende nicht nur für Hohlprofilknoten sondern auch für Schweißverbindungen anderer Hohlquerschnitte von Interesse. Durch eine Zusammenfassung und Aufbereitung der Ergebnisse als Vorschlag für eine DASt-Richtlinie werden schließlich diese Empfehlungen für die praktische Umsetzung im bauaufsichtlich geregelten Bereich allgemein nutzbar gemacht.

1.4 Lösungsweg – Approach

Die aufgeführten Forschungsziele sollen auf Grundlage experimenteller und theoretischer Untersuchungen erreicht werden. Dazu sind die in Abb. 1.5 dargestellten Arbeitsschritte geplant.

Arbeitsschritt I: Analyse vorhandener Versuchsergebnisse und Validierung eines ersten Ansatzes für den Ermüdungsnachweis

Durch das Zusammentragen und Evaluieren von Versuchsergebnissen bisheriger Forschungsvorhaben, einschließlich der Daten für andere Parameterbereiche, sowie durch systematische numerische Untersuchungen zur Identifikation von bestimmten Einflüssen ist geplant, den im Vor-

Abb. 1.5: Zuordnungsübersicht der einzelnen Arbeitsschritte

Fig. 1.5: Assignment overview of the individual working steps

gängerprojekt FOSTA P815 [70] für dickwandige Hohlprofilknoten hergeleitete Bemessungsvorschlag, einschließlich Wanddickeneinfluss, für die ansetzbare Ermüdungsfestigkeit nach DIN EN 1993-1-9 [37], zu verallgemeinern und den entsprechenden Anwendungsbereich abzusichern. Dabei muss besonders auf die Bezugswerte der Spannungsschwingbreiten (Nennspannungen oder Hot-Spot-Spannungen) und auf die unterschiedlichen Versagenskriterien geachtet werden. Die Ergebnisse werden in Kap. 6 vorgestellt.

Arbeitsschritt II: Erweiterung auf Großstrukturen

Der zweite Arbeitsschritt setzt sich aus experimentellen und parallel verlaufenden numerischen Untersuchungen zusammen. An Hohlprofilknoten mit Durchmessern von 660 mm und Wanddicken von 60 mm ist geplant, stichprobenartig die im Vorgängervorhaben entwickelten Empfehlungen für Bemessung und Fertigung sowie die bisher bestimmten Ermüdungsfestigkeiten für dickwandige K-Knoten zu untersuchen, um so das Anwendungsspektrum des Bemessungsvorschlags zu erweitern. Die Großversuche umfassen drei stichprobenartige Ermüdungsversuche an K-förmigen Fachwerkknoten aus Rundhohlprofilen. Die Abmessungen der Streben sollen bis ca. Ø406 mm × 12,5 mm reichen. Die Hohlprofilknoten werden aufgrund der notwendigen hohen Prüflasten in einem Resonanzprüfstand, siehe [70, Kap. 8], durchgeführt. Aufgrund der sehr großen Massen (ca. 14,5 to je Prüfkörper) und nach der Erfahrung des Vorgängerprojektes ist zu erwarten, dass nicht nur, wie erwünscht, der maßgebende Gurt-Streben-Bereich Ermüdungsschäden aufzeigen wird, sondern dass sich auch an anderen Stellen, wie zum Beispiel dem Anschluss Gurthohlprofil-Kopfplatte, vorzeitig vor Versagen des eigentlichen Knotens Risse bilden können. Es ist deshalb mit mehreren Reparaturen zu rechnen. Die Ergebnisse der experimentellen und numerischen Untersuchungen an den Großstrukturen sind hierzu in Kap. 3 zusammengefasst.

Arbeitsschritt III: Quantifizierung des Einflusses von Nahtqualität und Nahtgeometrie Im dritten Arbeitsschritt werden die Einflüsse, die sich aus der Nahtqualität und der Gestaltung

der Nahtgeometrie auf das Ermüdungsverhalten ergeben, in experimentellen und numerischen Untersuchungen identifiziert.

Bei den Nahtunregelmäßigkeiten wird zunächst mit Hilfe der numerischen Untersuchungen geklärt, bei welcher Spaltgröße s_{grenz} sich nicht mehr der Nahtübergang sondern der Wurzelspalt der Schweißnaht als Rissausgangsort herausstellt. Mit Spaltgröße wird dabei der Abstand *s* zwischen Gurt und aufgeschweißter Strebe verstanden. Mit Hilfe einer vorhergehenden Parameterstudie, soll dieser "Umschlagspunkt" bestimmt werden. DIN EN ISO 5817 [42] gibt für den Betrag des Spaltes einen maximalen Wert von 2 mm vor, während der CIDECT Design-Guide [130, S. 51] die Spaltgröße auf 3 mm begrenzt. In den experimentellen Untersuchungen werden u.a. ausgehend von diesen Grenzwerten zwei Spaltgrößen untersucht und schließlich die gewonnenen numerischen Ergebnisse validiert. Mit Hilfe weiterer Ermüdungsversuche wird der Einfluss der Nahtqualität auf die Ermüdungsfestigkeit systematisch untersucht. Aus den in den Versuchen gewonnenen Ergebnissen, sollen Empfehlungen für die Berücksichtigung der Nahtqualität entwickelt werden.

Die experimentellen Untersuchungen werden wie im Vorgängervorhaben am mehraxialen Versuchsstand der MPA Stuttgart stattfinden und fünf Serien von Ermüdungsversuchen umfassen. Die untersuchten Knoten haben einen Gurtdurchmesser von 177.8 mm mit Wanddicken von 20 mm. Die Streben haben dabei einen Durchmesser von 88,9 mm und Wanddicken von 12,5 mm. Die Referenzuntersuchungen (Serie 100) mit der planmäßigen Nahtgeometrie aus FOSTA P815 [70] dienen der Einordnung der Schweißnahtqualität in Bezug auf FOSTA P815. In den Testserien 101 und 102 werden die Spaltmaße an der Kronenferse in Abweichung von der Nahtgeometrie aus FOSTA P815 untersucht. Es wird davon ausgegangen, dass sich ab einer gewissen Grenzspaltgröße der Versagensort vom Nahtübergang an die Nahtwurzel verschiebt. In der Testserie 101 soll das Spaltmaß so gewählt werden, dass es gerade noch nicht versagensrelevant wird (Rissausgang vom Nahtübergang). In der Testserie 102 wird die Größe des Spaltmaßes so festgelegt, dass es das Ermüdungsversagen bestimmt (Rissausgang von Nahtwurzel). In Testserie 200 soll das Nahtvolumen an der Kronenspitze reduziert und eine Verschiebung des Schweißnahtübergangs gegenüber der Nahtgeometrie aus FOSTA P815 untersucht werden. Diese führt zu geringeren Schweißnahtvolumen und bietet damit ggf. eine wirtschaftlichere Variante der Schweißnaht. Die Ergebnisse der numerischen Voruntersuchungen und der Ermüdungsversuche sind ausführlich in den Kapiteln 4 und 5 dargestellt.

Arbeitsschritt IV: Entwicklung einer Prüfmethodik mit Hilfe der Ultraschallprüfung

Parallel zu den Ermüdungsuntersuchungen soll eine Prüfmethodik für die beschriebenen Hohlprofilknoten entwickelt werden. Besonderes Augenmerk wird dabei auf die Detektion und Quantifizierung von Wurzelspaltunregelmäßigkeiten gelegt. Dazu werden Probekörper mit künstlichen Wurzelspalten hergestellt. Die Ultraschallprüfung wird mit Winkelprüfköpfen durchgeführt. Es wird zunächst an ausgewählten Abschnitten geprüft. Die an diesen Stellen notwendigen Einschallwinkel und Abstände zur Schweißnaht werden experimentell bestimmt und mit berechneten Werten verglichen. Dazu werden parallel Näherungslösungen für die Schallstrahlreflexion an dreidimensional gekrümmten Flächen entwickelt. Anschließend werden Untersuchungen mit der Phased-Array-Technik durchgeführt, bei der die Einschallwinkel in Abhängigkeit von der Prüfposition eingestellt werden können. Ziel ist die Erarbeitung einer Prüfmethode für möglichst alle Positionen an der Schweißnaht des Hohlprofilknotens.

Im Rahmen dieses Forschungsvorhabens sollen dazu folgende Arbeiten durchgeführt werden:

a) Fertigung und ZfP von mit Schweißnahtunregelmäßigkeiten behafteten Prüfkörpern

- b) Erstellung eines numerischen Modells, das über die Untersuchungen in a) validiert wird
- c) Numerische Parameterstudie mit dem validierten Modell
- d) Vorschlag einer Prüfmethodik

Die erarbeiteten Ergebnisse sind hierzu in Kap. 7 aufbereitet.

Arbeitsschritt V: Entwicklung von Empfehlungen für Bemessung, Konstruktion (Schweißnaht) und Qualitätssicherung

Im Arbeitsschritt V werden die Ergebnisse aus den vorherigen Schritten ausgewertet und zu Empfehlungen verdichtet.

So wird der ursprünglich in *Arbeitsschritt I* definierte Bemessungsansatz durch die Versuchsergebnisse und numerischen Erkenntnisse zu Großstrukturen aus *Arbeitsschritt II* überprüft und ergänzt. Die in *III* identifizierte Abhängigkeit von der Nahtgeometrie wird in Bezug auf die Ermüdungsfestigkeit quantifiziert.

Konstruktive Empfehlungen für die Schweißnahtausführung, einschließlich ggf. von zulässigen Grenzspalte, werden anhand der Ergebnisse aus *Arbeitsschritt III* und *IV* entwickelt. Es werden Empfehlungen zur Quantifizierung der ausgeführten Nahtgeometrien insbesondere im Nahtwurzelbereich entwickelt und praxistauglich aufbereitet. Dabei wird auch auf die zerstörungsfreie Prüfung von Schweißnähten und auf die Möglichkeiten zur Ermittlung von Schweißnahtunregelmäßigkeiten eingegangen.

Die ZfP wird durch die komplizierte Geometrie im Anschlussbereich der Streben erheblich erschwert. Die Prüfanweisungen an großen Hohlprofilverbindungen mit großen r/t-Verhältnissen werden sich an denen für ebene Blechverbindungen anlehnen können. Für mittlere und kleine r/t-Verhältnisse müssen die Prüfanweisungen die Krümmung der Hohlprofilwandungen gemäß den Ergebnissen aus *Arbeitsschritt IV* berücksichtigen. Die hergeleiteten Empfehlungen werden in Kap. 8 präsentiert.

Arbeitsschritt VI: Aufbereitung der Ergebnisse zur Erarbeitung einer DASt-Richtlinie, Erstellung des Schlussberichts

Im sechsten Arbeitspaket wird ein Vorschlag für eine DASt-Richtlinie erarbeitet, um so die Planung, Bemessung, Ausführung und Qualitätssicherung geschweißter Rundhohlprofilknoten anwenderorientiert zu ermöglichen. Im Schlussbericht werden dann die aus den Ermüdungsversuchen gewonnenen Arbeitsergebnisse und die wissenschaftlichen Erkenntnisse in einer für die Praxis verdichteten Form aufbereitet. Die einzelnen Abschnitte des Vorschlags für die DASt-Richtlinie werden grau hinterlegt ebenfalls in Kap. 8 vorgestellt.